Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.1.hl.TZ2.9
Level HL only Paper 1 Time zone TZ2
Command term Show that Question number 9 Adapted from N/A

Question

The points A, B, C and D have position vectors a, b, c and d, relative to the origin O.

It is given that AB=DC.

The position vectors OAOBOC and OD are given by

a = i + 2j − 3k

b = 3ij + pk

c = qi + j + 2k

d = −i + rj − 2k

where p , q and r are constants.

The point where the diagonals of ABCD intersect is denoted by M.

The plane Π cuts the x, y and z axes at X , Y and Z respectively.

Explain why ABCD is a parallelogram.

[1]
a.i.

Using vector algebra, show that AD=BC.

[3]
a.ii.

Show that p = 1, q = 1 and r = 4.

[5]
b.

Find the area of the parallelogram ABCD.

[4]
c.

Find the vector equation of the straight line passing through M and normal to the plane Π containing ABCD.

[4]
d.

Find the Cartesian equation of Π.

[3]
e.

Find the coordinates of X, Y and Z.

[2]
f.i.

Find YZ.

[2]
f.ii.

Markscheme

a pair of opposite sides have equal length and are parallel      R1

hence ABCD is a parallelogram      AG

[1 mark]

a.i.

attempt to rewrite the given information in vector form       M1

ba = cd      A1

rearranging d − a = c − b       M1

hence  AD=BC     AG

Note: Candidates may correctly answer part i) by answering part ii) correctly and then deducing there
are two pairs of parallel sides.

[3 marks]

a.ii.

EITHER

use of AB=DC     (M1)

(23p+3)=(q+11r4)       A1A1

OR

use of AD=BC      (M1)

(2r21)=(q322p)      A1A1

THEN

attempt to compare coefficients of i, j, and k in their equation or statement to that effect       M1

clear demonstration that the given values satisfy their equation       A1
p = 1, q = 1, r = 4       AG

[5 marks]

b.

attempt at computing AB×AD (or equivalent)       M1

(11102)     A1

area =|AB×AD|(=225)      (M1)

= 15       A1

[4 marks]

c.

valid attempt to find OM=(12(a+c))      (M1)

(13212)     A1

the equation is

r(13212)+t(11102) or equivalent       M1A1

Note: Award maximum M1A0 if 'r = …' (or equivalent) is not seen.

[4 marks]

d.

attempt to obtain the equation of the plane in the form ax + by + cz = d       M1

11x + 10y + 2z = 25      A1A1

Note: A1 for right hand side, A1 for left hand side.

[3 marks]

e.

putting two coordinates equal to zero       (M1)

X(2511,0,0),Y(0,52,0),Z(0,0,252)      A1

[2 marks]

f.i.

YZ=(52)2+(252)2     M1

=3252(=51044=5262)     A1

[4 marks]

f.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.i.
[N/A]
f.ii.

Syllabus sections

Topic 4 - Core: Vectors » 4.1 » Algebraic and geometric approaches to the sum and difference of two vectors.
Show 21 related questions

View options