DP Mathematics HL Questionbank
Double angle identities.
Description
[N/A]Directly related questions
- 18M.2.hl.TZ1.3: Let ...
- 16M.1.hl.TZ1.5b: By writing \(15^\circ \) as \(60^\circ - 45^\circ \) find the value of \(\cos (15^\circ )\).
- 16N.1.hl.TZ0.13b: Show that \(\frac{{1 - \cos 2x}}{{2\sin x}} \equiv \sin x,{\text{ }}x \ne k\pi \) where...
- 12M.1.hl.TZ2.2: Find the values of x for which the vectors...
- 12M.1.hl.TZ2.9: Show that \(\frac{{\cos A + \sin A}}{{\cos A - \sin A}} = \sec 2A + \tan 2A\) .
- 12N.1.hl.TZ0.1: Given that \(\frac{\pi }{2} < \alpha < \pi \) and \(\cos \alpha = - \frac{3}{4}\), find...
- SPNone.1.hl.TZ0.1c: Find the value of \(\cos \left( {\frac{\theta }{2}} \right)\) , giving your answer in the form...
- SPNone.1.hl.TZ0.1b: Find the value of \(\tan 2\theta \) .
- 11N.1.hl.TZ0.4b: show that \({\left( {f(x)} \right)^2} = \frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x\);
- 12M.1.hl.TZ1.10b: By squaring both sides of the equation in part (a), solve the equation to find the angles in the...
- 14M.1.hl.TZ1.5b: Find a similar expression for \(\sin \frac{1}{2}x,{\text{ }}0 \leqslant x \leqslant \pi \).
- 14M.1.hl.TZ1.10: Given that \(\sin x + \cos x = \frac{2}{3}\), find \(\cos 4x\).
- 14M.1.hl.TZ2.9: The first three terms of a geometric sequence are \(\sin x,{\text{ }}\sin 2x\) and...
- 14M.1.hl.TZ1.5a: Use the identity \(\cos 2\theta = 2{\cos ^2}\theta - 1\) to prove that...
- 15N.1.hl.TZ0.9: Solve the equation \(\sin 2x - \cos 2x = 1 + \sin x - \cos x\) for...
- 14N.1.hl.TZ0.13b: (i) Use the double angle identity...