Processing math: 100%

User interface language: English | Español

Date May 2014 Marks available 6 Reference code 14M.1.hl.TZ1.10
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 10 Adapted from N/A

Question

Given that sinx+cosx=23, find cos4x.

Markscheme

sin2x+cos2x+2sinxcosx=49     (M1)(A1)

using sin2x+cos2x=1     (M1)

2sinxcosx=59

using 2sinxcosx=sin2x     (M1)

sin2x=59

cos4x=12sin22x     M1

 

Note:     Award this M1 for decomposition of cos 4x using double angle formula anywhere in the solution.

 

=12×2581

=3181     A1

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.3 » Double angle identities.

View options