Date | May 2014 | Marks available | 6 | Reference code | 14M.1.hl.TZ1.10 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 10 | Adapted from | N/A |
Question
Given that sinx+cosx=23, find cos4x.
Markscheme
sin2x+cos2x+2sinxcosx=49 (M1)(A1)
using sin2x+cos2x=1 (M1)
2sinxcosx=−59
using 2sinxcosx=sin2x (M1)
sin2x=−59
cos4x=1−2sin22x M1
Note: Award this M1 for decomposition of cos 4x using double angle formula anywhere in the solution.
=1−2×2581
=3181 A1
[6 marks]
Examiners report
[N/A]