Date | May 2014 | Marks available | 6 | Reference code | 14M.1.hl.TZ1.10 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 10 | Adapted from | N/A |
Question
Given that \(\sin x + \cos x = \frac{2}{3}\), find \(\cos 4x\).
Markscheme
\({\sin ^2}x + {\cos ^2}x + 2\sin x\cos x = \frac{4}{9}\) (M1)(A1)
using \({\sin ^2}x + {\cos ^2}x = 1\) (M1)
\(2\sin x\cos x = - \frac{5}{9}\)
using \(2\sin x\cos x = \sin 2x\) (M1)
\(\sin 2x = - \frac{5}{9}\)
\(\cos 4x = 1 - 2{\sin ^2}2x\) M1
Note: Award this M1 for decomposition of cos 4x using double angle formula anywhere in the solution.
\( = 1 - 2 \times \frac{{25}}{{81}}\)
\( = \frac{{31}}{{81}}\) A1
[6 marks]
Examiners report
[N/A]