Date | May 2018 | Marks available | 5 | Reference code | 18M.2.hl.TZ1.3 |
Level | HL only | Paper | 2 | Time zone | TZ1 |
Command term | Express | Question number | 3 | Adapted from | N/A |
Question
Let \(f\left( x \right) = {\text{tan}}\left( {x + \pi } \right){\text{cos}}\left( {x - \frac{\pi }{2}} \right)\) where \(0 < x < \frac{\pi }{2}\).
Express \(f\left( x \right)\) in terms of sin \(x\) and cos \(x\).
Markscheme
\({\text{tan}}\left( {x + \pi } \right) = \tan x\left( { = \frac{{{\text{sin}}\,x}}{{{\text{cos}}\,x}}} \right)\) (M1)A1
\({\text{cos}}\left( {x - \frac{\pi }{2}} \right) = {\text{sin}}\,x\) (M1)A1
Note: The two M1s can be awarded for observation or for expanding.
\({\text{tan}}\left( {x + \pi } \right) = {\text{cos}}\left( {x - \frac{\pi }{2}} \right) = \frac{{{\text{si}}{{\text{n}}^2}\,x}}{{{\text{cos}}\,x}}\) A1
[5 marks]