Date | May 2012 | Marks available | 6 | Reference code | 12M.1.hl.TZ2.9 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Show that | Question number | 9 | Adapted from | N/A |
Question
Show that cosA+sinAcosA−sinA=sec2A+tan2AcosA+sinAcosA−sinA=sec2A+tan2A .
Markscheme
METHOD 1
cosA+sinAcosA−sinA=sec2A+tan2AcosA+sinAcosA−sinA=sec2A+tan2A
consider right hand side
sec2A+tan2A=1cos2A+sin2Acos2Asec2A+tan2A=1cos2A+sin2Acos2A M1A1
=cos2A+2sinAcosA+sin2Acos2A−sin2A=cos2A+2sinAcosA+sin2Acos2A−sin2A A1A1
Note: Award A1 for recognizing the need for single angles and A1 for recognizing cos2A+sin2A=1cos2A+sin2A=1 .
=(cosA+sinA)2(cosA+sinA)(cosA−sinA)=(cosA+sinA)2(cosA+sinA)(cosA−sinA) M1A1
=cosA+sinAcosA−sinA=cosA+sinAcosA−sinA AG
METHOD 2
cosA+sinAcosA−sinA=(cosA+sinA)2(cosA+sinA)(cosA−sinA)cosA+sinAcosA−sinA=(cosA+sinA)2(cosA+sinA)(cosA−sinA) M1A1
=cos2A+2sinAcosA+sin2Acos2A−sin2A=cos2A+2sinAcosA+sin2Acos2A−sin2A A1A1
Note: Award A1 for correct numerator and A1 for correct denominator.
=1+sin2Acos2A=1+sin2Acos2A M1A1
=sec2A+tan2A=sec2A+tan2A AG
[6 marks]
Examiners report
Solutions to this question were good in general with many candidates realising that multiplying the numerator and denominator by (cosA+sinA)(cosA+sinA) might be helpful.