User interface language: English | Español

Date May 2012 Marks available 6 Reference code 12M.1.hl.TZ2.9
Level HL only Paper 1 Time zone TZ2
Command term Show that Question number 9 Adapted from N/A

Question

Show that cosA+sinAcosAsinA=sec2A+tan2AcosA+sinAcosAsinA=sec2A+tan2A .

Markscheme

METHOD 1

cosA+sinAcosAsinA=sec2A+tan2AcosA+sinAcosAsinA=sec2A+tan2A

consider right hand side

sec2A+tan2A=1cos2A+sin2Acos2Asec2A+tan2A=1cos2A+sin2Acos2A     M1A1

=cos2A+2sinAcosA+sin2Acos2Asin2A=cos2A+2sinAcosA+sin2Acos2Asin2A     A1A1 

Note: Award A1 for recognizing the need for single angles and A1 for recognizing cos2A+sin2A=1cos2A+sin2A=1 .

 

=(cosA+sinA)2(cosA+sinA)(cosAsinA)=(cosA+sinA)2(cosA+sinA)(cosAsinA)     M1A1

=cosA+sinAcosAsinA=cosA+sinAcosAsinA     AG

 

METHOD 2

cosA+sinAcosAsinA=(cosA+sinA)2(cosA+sinA)(cosAsinA)cosA+sinAcosAsinA=(cosA+sinA)2(cosA+sinA)(cosAsinA)     M1A1

=cos2A+2sinAcosA+sin2Acos2Asin2A=cos2A+2sinAcosA+sin2Acos2Asin2A     A1A1 

Note: Award A1 for correct numerator and A1 for correct denominator.

 

=1+sin2Acos2A=1+sin2Acos2A     M1A1

=sec2A+tan2A=sec2A+tan2A     AG

[6 marks]

Examiners report

 

Solutions to this question were good in general with many candidates realising that multiplying the numerator and denominator by (cosA+sinA)(cosA+sinA) might be helpful.

 

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.3 » Compound angle identities.

View options