User interface language: English | Español

Date May 2014 Marks available 7 Reference code 14M.1.hl.TZ2.9
Level HL only Paper 1 Time zone TZ2
Command term Find and Show that Question number 9 Adapted from N/A

Question

The first three terms of a geometric sequence are \(\sin x,{\text{ }}\sin 2x\) and \(4\sin x{\cos ^2}x,{\text{ }} - \frac{\pi }{2} < x < \frac{\pi }{2}\).

(a)     Find the common ratio r.

(b)     Find the set of values of x for which the geometric series \(\sin x + \sin 2x + 4\sin x{\cos ^2}x +  \ldots \) converges.

Consider \(x = \arccos \left( {\frac{1}{4}} \right),{\text{ }}x > 0\).

(c)     Show that the sum to infinity of this series is \(\frac{{\sqrt {15} }}{2}\).

Markscheme

(a)     \(\sin x,{\text{ }}\sin 2x{\text{ and }}4\sin x{\cos ^2}x\)

\(r = \frac{{2\sin x\cos x}}{{\sin x}} = 2\cos x\)     A1

 

Note:     Accept \(\frac{{\sin 2x}}{{\sin x}}\).

 

[1 mark]

 

(b)     EITHER

\(\left| r \right| < 1 \Rightarrow \left| {2\cos x} \right| < 1\)     M1

OR

\( - 1 < r < 1 \Rightarrow  - 1 < 2\cos x < 1\)     M1

THEN

\(0 < \cos x < \frac{1}{2}{\text{ for }} - \frac{\pi }{2} < x < \frac{\pi }{2}\)

\( - \frac{\pi }{2} < x <  - \frac{\pi }{3}{\text{ or }}\frac{\pi }{3} < x < \frac{\pi }{2}\)     A1A1

[3 marks]

 

(c)     \({S_\infty } = \frac{{\sin x}}{{1 - 2\cos x}}\)     M1

\({S_\infty } = \frac{{\sin \left( {\arccos \left( {\frac{1}{4}} \right)} \right)}}{{1 - 2\cos \left( {\arccos \left( {\frac{1}{4}} \right)} \right)}}\)

\( = \frac{{\frac{{\sqrt {15} }}{4}}}{{\frac{1}{2}}}\)     A1A1

 

Note: Award A1 for correct numerator and A1 for correct denominator.

 

\( = \frac{{\sqrt {15} }}{2}\)     AG

[3 marks]

 

Total [7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Core: Algebra » 1.1 » Arithmetic sequences and series; sum of finite arithmetic series; geometric sequences and series; sum of finite and infinite geometric series.
Show 58 related questions

View options