Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 7 Reference code 14M.1.hl.TZ2.9
Level HL only Paper 1 Time zone TZ2
Command term Find and Show that Question number 9 Adapted from N/A

Question

The first three terms of a geometric sequence are sinx, sin2x and 4sinxcos2x, π2<x<π2.

(a)     Find the common ratio r.

(b)     Find the set of values of x for which the geometric series sinx+sin2x+4sinxcos2x+ converges.

Consider x=arccos(14), x>0.

(c)     Show that the sum to infinity of this series is 152.

Markscheme

(a)     sinx, sin2x and 4sinxcos2x

r=2sinxcosxsinx=2cosx     A1

 

Note:     Accept sin2xsinx.

 

[1 mark]

 

(b)     EITHER

|r|<1|2cosx|<1     M1

OR

1<r<11<2cosx<1     M1

THEN

0<cosx<12 for π2<x<π2

π2<x<π3 or π3<x<π2     A1A1

[3 marks]

 

(c)     S=sinx12cosx     M1

S=sin(arccos(14))12cos(arccos(14))

=15412     A1A1

 

Note: Award A1 for correct numerator and A1 for correct denominator.

 

=152     AG

[3 marks]

 

Total [7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Core: Algebra » 1.1 » Arithmetic sequences and series; sum of finite arithmetic series; geometric sequences and series; sum of finite and infinite geometric series.
Show 58 related questions

View options