User interface language: English | Español

Date May 2014 Marks available 2 Reference code 14M.1.hl.TZ1.5
Level HL only Paper 1 Time zone TZ1
Command term Prove that Question number 5 Adapted from N/A

Question

Use the identity \(\cos 2\theta  = 2{\cos ^2}\theta  - 1\) to prove that \(\cos \frac{1}{2}x = \sqrt {\frac{{1 + \cos x}}{2}} ,{\text{ }}0 \leqslant x \leqslant \pi \).

[2]
a.

Find a similar expression for \(\sin \frac{1}{2}x,{\text{ }}0 \leqslant x \leqslant \pi \).

[2]
b.

Hence find the value of \(\int_0^{\frac{\pi }{2}} {\left( {\sqrt {1 + \cos x}  + \sqrt {1 - \cos x} } \right){\text{d}}x} \).

[4]
c.

Markscheme

\(\cos x = 2{\cos ^2}\frac{1}{2}x - 1\)

\(\cos \frac{1}{2}x =  \pm \sqrt {\frac{{1 + \cos x}}{2}} \)     M1

positive as \(0 \leqslant x \leqslant \pi \)     R1

\(\cos \frac{1}{2}x = \sqrt {\frac{{1 + \cos x}}{2}} \)     AG

[2 marks]

a.

\(\cos 2\theta  = 1 - 2{\sin ^2}\theta \)     (M1)

\(\sin \frac{1}{2}x = \sqrt {\frac{{1 - \cos x}}{2}} \)     A1

[2 marks]

b.

\(\sqrt 2 \int_0^{\frac{\pi }{2}} {\cos \frac{1}{2}x + \sin \frac{1}{2}x{\text{d}}x} \)     A1

\( = \sqrt 2 \left[ {2\sin \frac{1}{2}x - 2\cos \frac{1}{2}x} \right]_0^{\frac{\pi }{2}}\)     A1

\( = \sqrt 2 (0) - \sqrt 2 (0 - 2)\)     A1

\( = 2\sqrt 2 \)     A1

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.3 » Double angle identities.

View options