Date | May 2014 | Marks available | 2 | Reference code | 14M.1.hl.TZ1.5 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 5 | Adapted from | N/A |
Question
Use the identity \(\cos 2\theta = 2{\cos ^2}\theta - 1\) to prove that \(\cos \frac{1}{2}x = \sqrt {\frac{{1 + \cos x}}{2}} ,{\text{ }}0 \leqslant x \leqslant \pi \).
Find a similar expression for \(\sin \frac{1}{2}x,{\text{ }}0 \leqslant x \leqslant \pi \).
Hence find the value of \(\int_0^{\frac{\pi }{2}} {\left( {\sqrt {1 + \cos x} + \sqrt {1 - \cos x} } \right){\text{d}}x} \).
Markscheme
\(\cos x = 2{\cos ^2}\frac{1}{2}x - 1\)
\(\cos \frac{1}{2}x = \pm \sqrt {\frac{{1 + \cos x}}{2}} \) M1
positive as \(0 \leqslant x \leqslant \pi \) R1
\(\cos \frac{1}{2}x = \sqrt {\frac{{1 + \cos x}}{2}} \) AG
[2 marks]
\(\cos 2\theta = 1 - 2{\sin ^2}\theta \) (M1)
\(\sin \frac{1}{2}x = \sqrt {\frac{{1 - \cos x}}{2}} \) A1
[2 marks]
\(\sqrt 2 \int_0^{\frac{\pi }{2}} {\cos \frac{1}{2}x + \sin \frac{1}{2}x{\text{d}}x} \) A1
\( = \sqrt 2 \left[ {2\sin \frac{1}{2}x - 2\cos \frac{1}{2}x} \right]_0^{\frac{\pi }{2}}\) A1
\( = \sqrt 2 (0) - \sqrt 2 (0 - 2)\) A1
\( = 2\sqrt 2 \) A1
[4 marks]