Processing math: 100%

User interface language: English | Español

Date May 2014 Marks available 2 Reference code 14M.1.hl.TZ1.5
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 5 Adapted from N/A

Question

Use the identity cos2θ=2cos2θ1 to prove that cos12x=1+cosx2, 0xπ.

[2]
a.

Find a similar expression for sin12x, 0xπ.

[2]
b.

Hence find the value of π20(1+cosx+1cosx)dx.

[4]
c.

Markscheme

cosx=2cos212x1

cos12x=±1+cosx2     M1

positive as 0xπ     R1

cos12x=1+cosx2     AG

[2 marks]

a.

cos2θ=12sin2θ     (M1)

sin12x=1cosx2     A1

[2 marks]

b.

2π20cos12x+sin12xdx     A1

=2[2sin12x2cos12x]π20     A1

=2(0)2(02)     A1

=22     A1

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.3 » Double angle identities.

View options