User interface language: English | Español

Date May 2009 Marks available 19 Reference code 09M.2.hl.TZ1.12
Level HL only Paper 2 Time zone TZ1
Command term Find, Show that, and Write down Question number 12 Adapted from N/A

Question

Let \(f\) be a function defined by \(f(x) = x + 2\cos x\) , \(x \in \left[ {0,{\text{ }}2\pi } \right]\) . The diagram below shows a region \(S\) bound by the graph of \(f\) and the line \(y = x\) .


 

A and C are the points of intersection of the line \(y = x\) and the graph of \(f\) , and B is the minimum point of \(f\) .

(a)     If A, B and C have x-coordinates \(a\frac{\pi }{2}\), \(b\frac{\pi }{6}\) and \(c\frac{\pi }{2}\), where \(a\) , \(b\), \(c \in \mathbb{N}\) , find the values of \(a\) , \(b\) and \(c\) .

(b)     Find the range of \(f\) .

(c)     Find the equation of the normal to the graph of f at the point C, giving your answer in the form \(y = px + q\) .

(d)     The region \(S\) is rotated through \({2\pi }\) about the x-axis to generate a solid.

  (i)     Write down an integral that represents the volume \(V\) of this solid.

  (ii)     Show that \(V = 6{\pi ^2}\) .

Markscheme

(a)     METHOD 1

using GDC

\(a = 1\), \(b = 5\), \(c = 3\)     A1A2A1

METHOD 2

\(x = x + 2\cos x \Rightarrow \cos x = 0\)

\( \Rightarrow x = \frac{\pi }{2}\), \(\frac{{3\pi }}{2}\) ...     M1

\(a = 1\), \(c = 3\)     A1

\(1 - 2\sin x = 0\)     M1

\( \Rightarrow \sin x = \frac{1}{2} \Rightarrow x = \frac{\pi }{6}\) or \(\frac{{5\pi }}{6}\)

\(b = 5\)     A1

Note: Final M1A1 is independent of previous work.

[4 marks]

 

(b)     \(f\left( {\frac{{5\pi }}{6}} \right) = \frac{{5\pi }}{6} - \sqrt 3 \)   (or \(0.886\))     (M1)

\(f(2\pi ) = 2\pi  + 2\) (or \(8.28\))     (M1)

the range is \(\left[ {\frac{{5\pi }}{6} - \sqrt 3 ,{\text{ }}2\pi  + 2} \right]\) (or [\(0.886\), \(8.28\)])     A1

[3 marks]

 

(c)     \(f'(x) = 1 - 2\sin x\)     (M1)

\(f'\left( {\frac{{3\pi }}{6}} \right) = 3\)     A1

gradient of normal \( = - \frac{1}{3}\)     (M1)

equation of the normal is \(y - \frac{{3\pi }}{2} = - \frac{1}{3}\left( {x - \frac{{3\pi }}{2}} \right)\)     (M1)

\(y = - \frac{1}{3}x + 2\pi \)   (or equivalent decimal values)     A1     N4

[5 marks]

 

(d)     (i)     \(V = \pi \int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( {{x^2} - {{\left( {x + 2\cos x} \right)}^2}} \right)} {\text{d}}x\)   (or equivalent)     A1A1

Note: Award A1 for limits and A1 for \(\pi \) and integrand.

 

(ii)     \(V = \pi \int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( {{x^2} - {{\left( {x + 2\cos x} \right)}^2}} \right)} {\text{d}}x\)

\( = - \pi \int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( {4x\cos x + 4{{\cos }^2}x} \right)} {\text{d}}x\)

using integration by parts     M1

and the identity \(4{\cos ^2}x = 2\cos 2x + 2\) ,     M1

\(V = - \pi \left[ {\left( {4x\sin x + 4\cos x} \right) + \left( {\sin 2x + 2x} \right)} \right]_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}}\)     A1A1

Note: Award A1 for \({4x\sin x + 4\cos x}\) and A1 for sin \({2x + 2x}\) .

 

\( = - \pi \left[ {\left( {6\pi \sin \frac{{3\pi }}{2} + 4\cos \frac{{3\pi }}{2} + \sin 3\pi  + 3\pi } \right) - \left( {2\pi sin\frac{\pi }{2} + 4\cos \frac{\pi }{2} + \sin \pi  + \pi } \right)} \right]\)     A1

\( = - \pi \left( { - 6\pi  + 3\pi  - \pi } \right)\)

\( = 6{\pi ^2}\)     AG     N0

Note: Do not accept numerical answers.

[7 marks]

 

Total [19 marks]

Examiners report

Generally there were many good attempts to this, more difficult, question. A number of students found \(b\) to be equal to 1, rather than 5. In the final part few students could successfully work through the entire integral successfully.

Syllabus sections

Topic 6 - Core: Calculus » 6.1 » Finding equations of tangents and normals.
Show 37 related questions

View options