Processing math: 100%

User interface language: English | Español

Date November 2017 Marks available 8 Reference code 17N.1.hl.TZ0.11
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 11 Adapted from N/A

Question

Consider the function fn(x)=(cos2x)(cos4x)(cos2nx), nZ+.

Determine whether fn is an odd or even function, justifying your answer.

[2]
a.

By using mathematical induction, prove that

fn(x)=sin2n+1x2nsin2x, xmπ2 where mZ.

[8]
b.

Hence or otherwise, find an expression for the derivative of fn(x) with respect to x.

[3]
c.

Show that, for n>1, the equation of the tangent to the curve y=fn(x) at x=π4 is 4x2yπ=0.

[8]
d.

Markscheme

even function     A1

since coskx=cos(kx) and fn(x) is a product of even functions     R1

OR

even function     A1

since (cos2x)(cos4x)=(cos(2x))(cos(4x))     R1

 

Note:     Do not award A0R1.

 

[2 marks]

a.

consider the case n=1

sin4x2sin2x=2sin2xcos2x2sin2x=cos2x     M1

hence true for n=1     R1

assume true for n=k, ie, (cos2x)(cos4x)(cos2kx)=sin2k+1x2ksin2x     M1

 

Note:     Do not award M1 for “let n=k” or “assume n=k” or equivalent.

 

consider n=k+1:

fk+1(x)=fk(x)(cos2k+1x)     (M1)

=sin2k+1x2ksin2xcos2k+1x     A1

=2sin2k+1xcos2k+1x2k+1sin2x     A1

=sin2k+2x2k+1sin2x     A1

so n=1 true and n=k true n=k+1 true. Hence true for all nZ+     R1

 

Note:     To obtain the final R1, all the previous M marks must have been awarded.

 

[8 marks]

b.

attempt to use f=vuuvv2 (or correct product rule)     M1

fn(x)=(2nsin2x)(2n+1cos2n+1x)(sin2n+1x)(2n+1cos2x)(2nsin2x)2     A1A1

 

Note:     Award A1 for correct numerator and A1 for correct denominator.

 

[3 marks]

c.

fn(π4)=(2nsinπ2)(2n+1cos2n+1π4)(sin2n+1π4)(2n+1cosπ2)(2nsinπ2)2     (M1)(A1)

fn(π4)=(2n)(2n+1cos2n+1π4)(2n)2     (A1)

=2cos2n+1π4 (=2cos2n1π)     A1

fn(π4)=2     A1

fn(π4)=0     A1

 

Note:     This A mark is independent from the previous marks.

 

y=2(xπ4)     M1A1

4x2yπ=0     AG

[8 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 6 - Core: Calculus » 6.1 » Informal ideas of limit, continuity and convergence.

View options