Date | May 2015 | Marks available | 4 | Reference code | 15M.2.hl.TZ2.11 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 11 | Adapted from | N/A |
Question
A curve is defined \({x^2} - 5xy + {y^2} = 7\).
Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{5y - 2x}}{{2y - 5x}}\).
Find the equation of the normal to the curve at the point \((6,{\text{ }}1)\).
Find the distance between the two points on the curve where each tangent is parallel to the line \(y = x\).
Markscheme
attempt at implicit differentiation M1
\(2x - 5x\frac{{{\text{d}}y}}{{{\text{d}}x}} - 5y + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) A1A1
Note: A1 for differentiation of \({x^2} - 5xy\), A1 for differentiation of \({y^2}\) and \(7\).
\(2x - 5y + \frac{{{\text{d}}y}}{{{\text{d}}x}}(2y - 5x) = 0\)
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{5y - 2x}}{{2y - 5x}}\) AG
[3 marks]
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{5 \times 1 - 2 \times 6}}{{2 \times 1 - 5 \times 6}} = \frac{1}{4}\) A1
gradient of normal \( = - 4\) A1
equation of normal \(y = - 4x + c\) M1
substitution of \((6,{\text{ }}1)\)
\(y = - 4x + 25\) A1
Note: Accept \(y - 1 = - 4(x - 6)\)
[4 marks]
setting \(\frac{{5y - 2x}}{{2y - 5x}} = 1\) M1
\(y = - x\) A1
substituting into original equation M1
\({x^2} + 5{x^2} + {x^2} = 7\) (A1)
\(7{x^2} = 7\)
\(x = \pm 1\) A1
points \((1,{\text{ }} - 1)\) and \(( - 1,{\text{ }}1)\) (A1)
distance \( = \sqrt 8 \;\;\;\left( { = 2\sqrt 2 } \right)\) (M1)A1
[8 marks]
Total [15 marks]