User interface language: English | Español

Date May 2017 Marks available 4 Reference code 17M.1.hl.TZ2.9
Level HL only Paper 1 Time zone TZ2
Command term Explain Question number 9 Adapted from N/A

Question

Consider the function \(f\) defined by \(f(x) = {x^2} - {a^2},{\text{ }}x \in \mathbb{R}\) where \(a\) is a positive constant.

The function \(g\) is defined by \(g(x) = x\sqrt {f(x)} \) for \(\left| x \right| > a\).

Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

\(y = f(x)\);

[2]
a.i.

Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

\(y = \frac{1}{{f(x)}}\);

[4]
a.ii.

Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

\(y = \left| {\frac{1}{{f(x)}}} \right|\).

[2]
a.iii.

Find \(\int {f(x)\cos x{\text{d}}x} \).

[5]
b.

By finding \(g'(x)\) explain why \(g\) is an increasing function.

[4]
c.

Markscheme

M17/5/MATHL/HP1/ENG/TZ2/09.a.i/M

A1 for correct shape

A1 for correct \(x\) and \(y\) intercepts and minimum point

[2 marks]

a.i.

M17/5/MATHL/HP1/ENG/TZ2/09.a.ii/M

A1 for correct shape

A1 for correct vertical asymptotes

A1 for correct implied horizontal asymptote

A1 for correct maximum point

[??? marks]

a.ii.

M17/5/MATHL/HP1/ENG/TZ2/09.a.iii/M

A1 for reflecting negative branch from (ii) in the \(x\)-axis

A1 for correctly labelled minimum point

[2 marks]

a.iii.

EITHER

attempt at integration by parts     (M1)

\(\int {({x^2} - {a^2})\cos x{\text{d}}x = ({x^2} - {a^2})\sin x - \int {2x\sin x{\text{d}}x} } \)     A1A1

\( = ({x^2} - {a^2})\sin x - 2\left[ { - x\cos x + \int {\cos x{\text{d}}x} } \right]\)     A1

\( = ({x^2} - {a^2})\sin x + 2x\cos - 2\sin x + c\)     A1

OR

\(\int {({x^2} - {a^2})\cos x{\text{d}}x = \int {{x^2}\cos x{\text{d}}x - \int {{a^2}\cos x{\text{d}}x} } } \)

attempt at integration by parts     (M1)

\(\int {{x^2}\cos x{\text{d}}x = {x^2}\sin x - \int {2x\sin x{\text{d}}x} } \)     A1A1

\( = {x^2}\sin x - 2\left[ { - x\cos x + \int {\cos x{\text{d}}x} } \right]\)     A1

\( = {x^2}\sin x + 2x\cos x - 2\sin x\)

\( - \int {{a^2}\cos x{\text{d}}x = - {a^2}\sin x} \)

\(\int {({x^2} - {a^2})\cos x{\text{d}}x = ({x^2} - {a^2})\sin x + 2x\cos x - 2\sin x + c} \)     A1

[5 marks]

b.

\(g(x) = x{({x^2} - {a^2})^{\frac{1}{2}}}\)

\(g'(x) = {({x^2} - {a^2})^{\frac{1}{2}}} + \frac{1}{2}x{({x^2} - {a^2})^{ - \frac{1}{2}}}(2x)\)     M1A1A1

 

Note:     Method mark is for differentiating the product. Award A1 for each correct term.

 

\(g'(x) = {({x^2} - {a^2})^{\frac{1}{2}}} + {x^2}{({x^2} - {a^2})^{ - \frac{1}{2}}}\)

both parts of the expression are positive hence \(g'(x)\) is positive     R1

and therefore \(g\) is an increasing function (for \(\left| x \right| > a\))     AG

[4 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.1 » Informal ideas of limit, continuity and convergence.

View options