Processing math: 100%

User interface language: English | Español

Date May 2014 Marks available 3 Reference code 14M.2.hl.TZ2.10
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 10 Adapted from N/A

Question

Consider the curve with equation (x2+y2)2=4xy2.

Use implicit differentiation to find an expression for dydx.

[5]
a.

Find the equation of the normal to the curve at the point (1, 1).

[3]
b.

Markscheme

METHOD 1

expanding the brackets first:

x4+2x2y2+y4=4xy2     M1

4x3+4xy2+4x2ydydx+4y3dydx=4y2+8xydydx     M1A1A1

 

Note:     Award M1 for an attempt at implicit differentiation.

     Award A1 for each side correct.

 

dydx=x3xy2+y2xy22xy+y3 or equivalent     A1

METHOD 2

2(x2+y2)(2x+2ydydx)=4y2+8xydydx     M1A1A1

 

Note:     Award M1 for an attempt at implicit differentiation.

     Award A1 for each side correct.

 

(x2+y2)(x+ydydx)=y2+2xydydx

x3+x2ydydx+y2x+y3dydx=y2+2xydydx     M1

dydx=x3xy2+y2yx22xy+y3 or equivalent     A1

[5 marks]

a.

METHOD 1

at (1, 1), dydx is undefined     M1A1

y=1     A1

METHOD 2

gradient of normal =1dydx=(yx22xy+y3)(x3xy2+y2)     M1

at (1, 1) gradient =0     A1

y=1     A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.1 » Finding equations of tangents and normals.
Show 37 related questions

View options