User interface language: English | Español

Date November 2015 Marks available 4 Reference code 15N.1.hl.TZ0.4
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 4 Adapted from N/A

Question

Consider the curve y=11x, xR, x1.

Find dydx.

[2]
a.

Determine the equation of the normal to the curve at the point x=3 in the form ax+by+c=0 where a, b, cZ.

[4]
b.

Markscheme

dydx=(1x)2(=1(1x)2)     (M1)A1

[2 marks]

a.

gradient of Tangent =14     (A1)

gradient of Normal =4     (M1)

y+12=4(x3) or attempt to find c in y=mx+c     M1

8x+2y23=0     A1

[4 marks]

Total [6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.1 » Finding equations of tangents and normals.
Show 37 related questions

View options