Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.2.hl.TZ2.10
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 10 Adapted from N/A

Question

Consider the expression f(x)=tan(x+π4)cot(π4x).

The expression f(x) can be written as g(t) where t=tanx.

Let αβ be the roots of g(t)=k, where 0 < k < 1.

Sketch the graph of y=f(x) for 5π8xπ8.

[2]
a.i.

With reference to your graph, explain why f is a function on the given domain.

[1]
a.ii.

Explain why f has no inverse on the given domain.

[1]
a.iii.

Explain why f is not a function for 3π4xπ4.

[1]
a.iv.

Show that g(t)=(1+t1t)2.

[3]
b.

Sketch the graph of y=g(t) for t ≤ 0. Give the coordinates of any intercepts and the equations of any asymptotes.

[3]
c.

Find α and β in terms of k.

[5]
d.i.

Show that α + β < −2.

[2]
d.ii.

Markscheme

     A1A1

A1 for correct concavity, many to one graph, symmetrical about the midpoint of the domain and with two axes intercepts.

Note: Axes intercepts and scales not required.

A1 for correct domain

[2 marks]

a.i.

for each value of x there is a unique value of f(x)      A1

Note: Accept “passes the vertical line test” or equivalent.

[1 mark]

a.ii.

no inverse because the function fails the horizontal line test or equivalent      R1

Note: No FT if the graph is in degrees (one-to-one).

[1 mark]

a.iii.

the expression is not valid at either of x=π4(or3π4)       R1

[1 mark]

a.iv.

METHOD 1

f(x)=tan(x+π4)tan(π4x)     M1

=tanx+tanπ41tanxtanπ4tanπ4tanx1+tanπ4tanx      M1A1

=(1+t1t)2      AG

 

METHOD 2

f(x)=tan(x+π4)tan(π2π4+x)      (M1)

=tan2(x+π4)     A1

g(t)=(tanx+tanπ41tanxtanπ4)2     A1

=(1+t1t)2      AG

[3 marks]

b.

 

for t ≤ 0, correct concavity with two axes intercepts and with asymptote y = 1      A1

t intercept at (−1, 0)      A1

y intercept at (0, 1)       A1

[3 marks]

c.

METHOD 1

αβ satisfy (1+t)2(1t)2=k     M1

1+t2+2t=k(1+t22t)     A1

(k1)t22(k+1)t+(k1)=0     A1

attempt at using quadratic formula      M1

αβ =k+1±2kk1 or equivalent     A1

 

METHOD 2

αβ satisfy 1+t1t=(±)k      M1

t+kt=k1      M1

t=k1k+1 (or equivalent)      A1

tkt=(k+1)     M1

t=k+1k1 (or equivalent)       A1

so for egα=k1k+1β =k+1k1

[5 marks]

d.i.

α + β =2(k+1)(k1)(=2(1+k)(1k))     A1

since 1+k>1k     R1

α + β < −2     AG

Note: Accept a valid graphical reasoning.

[2 marks]

d.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
a.iv.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.6 » Sum and product of the roots of polynomial equations.

View options