Date | November 2016 | Marks available | 6 | Reference code | 16N.1.hl.TZ0.5 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 5 | Adapted from | N/A |
Question
The quadratic equation \({x^2} - 2kx + (k - 1) = 0\) has roots \(\alpha \) and \(\beta \) such that \({\alpha ^2} + {\beta ^2} = 4\). Without solving the equation, find the possible values of the real number \(k\).
Markscheme
\(\alpha + \beta = 2k\) A1
\(\alpha \beta = k - 1\) A1
\({(\alpha + \beta )^2} = 4{k^2} \Rightarrow {\alpha ^2} + {\beta ^2} + 2\underbrace {\alpha \beta }_{k - 1} = 4{k^2}\) (M1)
\({\alpha ^2} + {\beta ^2} = 4{k^2} - 2k + 2\)
\({\alpha ^2} + {\beta ^2} = 4 \Rightarrow 4{k^2} - 2k - 2 = 0\) A1
attempt to solve quadratic (M1)
\(k = 1,{\text{ }} - \frac{1}{2}\) A1
[6 marks]