User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.2.hl.TZ2.8
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 8 Adapted from N/A

Question

The random variable X has a binomial distribution with parameters n and p.
It is given that E(X) = 3.5.

Find the least possible value of n.

[2]
a.

It is further given that P(X ≤ 1) = 0.09478 correct to 4 significant figures.

Determine the value of n and the value of p.

[5]
b.

Markscheme

np = 3.5      (A1)

p ≤ 1 ⇒ least n = 4       A1

[2 marks]

a.

(1 − p)n + np(1 − p)n−1 = 0.09478     M1A1

attempt to solve above equation with np = 3.5     (M1)

n = 12,  p = \(\frac{7}{{24}}\) (=0.292)     A1A1

Note: Do not accept n as a decimal.

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.6 » Binomial distribution, its mean and variance.
Show 48 related questions

View options