User interface language: English | Español

Date November 2016 Marks available 3 Reference code 16N.2.hl.TZ0.3
Level HL only Paper 2 Time zone TZ0
Command term Find Question number 3 Adapted from N/A

Question

A discrete random variable \(X\) follows a Poisson distribution \({\text{Po}}(\mu )\).

Show that \({\text{P}}(X = x + 1) = \frac{\mu }{{x + 1}} \times {\text{P}}(X = x),{\text{ }}x \in \mathbb{N}\).

[3]
a.

Given that \({\text{P}}(X = 2) = 0.241667\) and \({\text{P}}(X = 3) = 0.112777\), use part (a) to find the value of \(\mu \).

[3]
b.

Markscheme

METHOD 1

\({\text{P}}(X = x + 1) = \frac{{{\mu ^{x + 1}}}}{{(x + 1)!}}{{\text{e}}^{ - \mu }}\)    A1

\( = \frac{\mu }{{x + 1}} \times \frac{{{\mu ^x}}}{{x!}}{{\text{e}}^{ - \mu }}\)    M1A1

\( = \frac{\mu }{{x + 1}} \times {\text{P}}(X = x)\)    AG

METHOD 2

\(\frac{\mu }{{x + 1}} \times {\text{P}}(X = x) = \frac{\mu }{{x + 1}} \times \frac{{{\mu ^x}}}{{x!}}{{\text{e}}^{ - \mu }}\)    A1

\( = \frac{{{\mu ^{x + 1}}}}{{(x + 1)!}}{{\text{e}}^{ - \mu }}\)    M1A1

\( = {\text{P}}(X = x + 1)\)    AG

METHOD 3

\(\frac{{{\text{P}}(X = x + 1)}}{{{\text{P}}(X = x)}} = \frac{{\frac{{{\mu ^{x + 1}}}}{{(x + 1)!}}{{\text{e}}^{ - \mu }}}}{{\frac{{{\mu ^x}}}{{x!}}{{\text{e}}^{ - \mu }}}}\)    (M1)

\( = \frac{{{\mu ^{x + 1}}}}{{{\mu ^x}}} \times \frac{{x!}}{{(x + 1)!}}\)    A1

\( = \frac{\mu }{{x + 1}}\)    A1

and so \({\text{P}}(X = x + 1) = \frac{\mu }{{x + 1}} \times {\text{P}}(X = x)\)     AG

[3 marks]

a.

\({\text{P}}(X = 3) = \frac{\mu }{3} \bullet {\text{P}}(X = 2){\text{ }}\left( {0.112777 = \frac{\mu }{3} \bullet 0.241667} \right)\)    A1

attempting to solve for \(\mu \)     (M1)

\(\mu  = 1.40\)    A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.6 » Binomial distribution, its mean and variance.
Show 48 related questions

View options