Date | November 2016 | Marks available | 3 | Reference code | 16N.2.hl.TZ0.3 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Show that | Question number | 3 | Adapted from | N/A |
Question
A discrete random variable X follows a Poisson distribution Po(μ).
Show that P(X=x+1)=μx+1×P(X=x), x∈N.
[3]
a.
Given that P(X=2)=0.241667 and P(X=3)=0.112777, use part (a) to find the value of μ.
[3]
b.
Markscheme
METHOD 1
P(X=x+1)=μx+1(x+1)!e−μ A1
=μx+1×μxx!e−μ M1A1
=μx+1×P(X=x) AG
METHOD 2
μx+1×P(X=x)=μx+1×μxx!e−μ A1
=μx+1(x+1)!e−μ M1A1
=P(X=x+1) AG
METHOD 3
P(X=x+1)P(X=x)=μx+1(x+1)!e−μμxx!e−μ (M1)
=μx+1μx×x!(x+1)! A1
=μx+1 A1
and so P(X=x+1)=μx+1×P(X=x) AG
[3 marks]
a.
P(X=3)=μ3∙P(X=2) (0.112777=μ3∙0.241667) A1
attempting to solve for μ (M1)
μ=1.40 A1
[3 marks]
b.
Examiners report
[N/A]
a.
[N/A]
b.