Processing math: 100%

User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.1.hl.TZ1.10
Level HL only Paper 1 Time zone TZ1
Command term Calculate Question number 10 Adapted from N/A

Question

The continuous random variable X has a probability density function given by

f(x)={ksin(πx6),0x60,otherwise.

Find the value of k.

[4]
a.

By considering the graph of f write down the mean of X;

[1]
b.i.

By considering the graph of f write down the median of X;

[1]
b.ii.

By considering the graph of f write down the mode of X.

[1]
b.iii.

Show that P(0X2)=14.

[4]
c.i.

Hence state the interquartile range of X.

[2]
c.ii.

Calculate P(X4|X3).

[2]
d.

Markscheme

attempt to equate integral to 1 (may appear later)     M1

k60sin(πx6)dx=1

correct integral     A1

k[6πcos(πx6)]60=1

substituting limits     M1

6π(11)=1k

k=π12 A1

[4 marks]

a.

mean =3     A1

 

Note:     Award A1A0A0 for three equal answers in (0, 6).

 

[1 mark]

b.i.

median =3     A1

 

Note:     Award A1A0A0 for three equal answers in (0, 6).

 

[1 mark]

b.ii.

mode =3     A1

 

Note:     Award A1A0A0 for three equal answers in (0, 6).

 

[1 mark]

b.iii.

π1220sin(πx6)dx    M1

=π12[6πcos(πx6)]20     A1

 

Note:     Accept without the π12 at this stage if it is added later.

 

π12[6π(cosπ31)]     M1

=14     AG

[4 marks]

c.i.

from (c)(i) Q1=2     (A1)

as the graph is symmetrical about the middle value x=3Q3=4     (A1)

so interquartile range is

42

=2     A1

[3 marks]

c.ii.

P(X4|X3)=P(3X4)P(X3)

=1412     (M1)

=12     A1

[2 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.4
Show 34 related questions

View options