User interface language: English | Español

Date May 2015 Marks available 2 Reference code 15M.1.hl.TZ2.1
Level HL only Paper 1 Time zone TZ2
Command term Determine Question number 1 Adapted from N/A

Question

\(A\) and \(B\) are two events such that \({\text{P}}(A) = 0.25,{\text{ P}}(B) = 0.6\) and \({\text{P}}(A \cup B) = 0.7\).

Find \({\text{P}}(A \cap B)\).

[2]
a.

Determine whether events \(A\) and \(B\) are independent.

[2]
b.

Markscheme

\({\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(B) - {\text{P}}(A \cap B)\)

\({\text{P}}(A \cap B) = 0.25 + 0.6 = 0.7\)     M1

\( = 0.15\)     A1

[2 marks]

a.

EITHER

\({\text{P}}(A){\text{P}}(B)( = 0.25 \times 0.6) = 0.15\)     A1

\( = {\text{P}}(A \cap B)\) so independent     R1

OR

\({\text{P}}(A|B) = \frac{{{\text{P}}(A \cap B)}}{{{\text{P}}(B)}} = \frac{{0.15}}{{0.6}} = 0.25\)     A1

\( = {\text{P}}(A)\) so independent     R1

 

Note:     Allow follow through for incorrect answer to (a) that will result in events being dependent in (b).

[2 marks]

Total [4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.4 » Independent events; the definition \(P\left( {\left. A \right|B} \right) = P\left( A \right) = P\left( {\left. A \right|B'} \right)\) .

View options