Date | November 2016 | Marks available | 6 | Reference code | 16N.1.hl.TZ0.13 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Hence or otherwise | Question number | 13 | Adapted from | N/A |
Question
Find the value of sinπ4+sin3π4+sin5π4+sin7π4+sin9π4.
Show that 1−cos2x2sinx≡sinx, x≠kπ where k∈Z.
Use the principle of mathematical induction to prove that
sinx+sin3x+…+sin(2n−1)x=1−cos2nx2sinx, n∈Z+, x≠kπ where k∈Z.
Hence or otherwise solve the equation sinx+sin3x=cosx in the interval 0<x<π.
Markscheme
sinπ4+sin3π4+sin5π4+sin7π4+sin9π4=√22+√22−√22−√22+√22=√22 (M1)A1
Note: Award M1 for 5 equal terms with \) + \) or − signs.
[2 marks]
1−cos2x2sinx≡1−(1−2sin2x)2sinx M1
≡2sin2x2sinx A1
≡sinx AG
[2 marks]
let P(n):sinx+sin3x+…+sin(2n−1)x≡1−cos2nx2sinx
if n=1
P(1):1−cos2x2sinx≡sinx which is true (as proved in part (b)) R1
assume P(k) true, sinx+sin3x+…+sin(2k−1)x≡1−cos2kx2sinx M1
Notes: Only award M1 if the words “assume” and “true” appear. Do not award M1 for “let n=k” only. Subsequent marks are independent of this M1.
consider P(k+1):
P(k+1):sinx+sin3x+…+sin(2k−1)x+sin(2k+1)x≡1−cos2(k+1)x2sinx
LHS=sinx+sin3x+…+sin(2k−1)x+sin(2k+1)x M1
≡1−cos2kx2sinx+sin(2k+1)x A1
≡1−cos2kx+2sinxsin(2k+1)x2sinx
≡1−cos2kx+2sinxcosxsin2kx+2sin2xcos2kx2sinx M1
≡1−((1−2sin2x)cos2kx−sin2xsin2kx)2sinx M1
≡1−(cos2xcos2kx−sin2xsin2kx)2sinx A1
≡1−cos(2kx+2x)2sinx A1
≡1−cos2(k+1)x2sinx
so if true for n=k , then also true for n=k+1
as true for n=1 then true for all n∈Z+ R1
Note: Accept answers using transformation formula for product of sines if steps are shown clearly.
Note: Award R1 only if candidate is awarded at least 5 marks in the previous steps.
[9 marks]
EITHER
sinx+sin3x=cosx⇒1−cos4x2sinx=cosx M1
⇒1−cos4x=2sinxcosx, (sinx≠0) A1
⇒1−(1−2sin22x)=sin2x M1
⇒sin2x(2sin2x−1)=0 M1
⇒sin2x=0 or sin2x=12 A1
2x=π, 2x=π6 and 2x=5π6
OR
sinx+sin3x=cosx⇒2sin2xcosx=cosx M1A1
⇒(2sin2x−1)cosx=0, (sinx≠0) M1A1
⇒sin2x=12 of cosx=0 A1
2x=π6, 2x=5π6 and x=π2
THEN
∴ and x = \frac{{5\pi }}{{12}} A1
Note: Do not award the final A1 if extra solutions are seen.
[6 marks]