User interface language: English | Español

Date May 2015 Marks available 6 Reference code 15M.1.hl.TZ2.3
Level HL only Paper 1 Time zone TZ2
Command term Find Question number 3 Adapted from N/A

Question

Find all solutions to the equation \(\tan x + \tan 2x = 0\) where \(0^\circ  \le x < 360^\circ\).

Markscheme

\(\tan x + \tan 2x = 0\)

\(\tan x + \frac{{2\tan x}}{{1 - {{\tan }^2}x}} = 0\)     M1

\(\tan x - {\tan ^3}x + 2\tan x = 0\)     A1

\(\tan x(3 - {\tan ^2}x) = 0\)     (M1)

\(\tan x = 0 \Rightarrow x = 0,{\text{ }}x = 180^\circ \)     A1

 

Note:     If \(x = 360^\circ \) seen anywhere award A0

 

\(\tan x = \sqrt 3  \Rightarrow x = 60^\circ ,{\text{ }}240^\circ \)     A1

\(\tan x =  - \sqrt 3  \Rightarrow x = 120^\circ ,{\text{ }}300^\circ \)     A1

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.6 » Algebraic and graphical methods of solving trigonometric equations in a finite interval, including the use of trigonometric identities and factorization.
Show 22 related questions

View options