User interface language: English | Español

Date May 2014 Marks available 3 Reference code 14M.1.hl.TZ2.5
Level HL only Paper 1 Time zone TZ2
Command term Solve Question number 5 Adapted from N/A

Question

Sketch the graph of \(y = \left| {\cos \left( {\frac{x}{4}} \right)} \right|\) for \(0 \leqslant x \leqslant 8\pi \).

[2]
a.

Solve \(\left| {\cos \left( {\frac{x}{4}} \right)} \right| = \frac{1}{2}\) for \(0 \leqslant x \leqslant 8\pi \).

[3]
b.

Markscheme

    A1A1

 

Note:     Award A1 for correct shape and A1 for correct domain and range.

 

[2 marks]

a.

\(\left| {\cos \left( {\frac{x}{4}} \right)} \right| = \frac{1}{2}\)

\(x = \frac{{4\pi }}{3}\)     A1

attempting to find any other solutions     M1

 

Note:     Award (M1) if at least one of the other solutions is correct (in radians or degrees) or clear use of symmetry is seen.

 

\(x = 8\pi  - \frac{{4\pi }}{3} = \frac{{20 \pi }}{3}\)

\(x = 4\pi  - \frac{{4\pi }}{3} = \frac{{8\pi }}{3}\)

\(x = 4\pi  + \frac{{4\pi }}{3} = \frac{{16\pi }}{3}\)     A1

 

Note:     Award A1 for all other three solutions correct and no extra solutions.

 

Note:     If working in degrees, then max A0M1A0.

 

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.6 » Algebraic and graphical methods of solving trigonometric equations in a finite interval, including the use of trigonometric identities and factorization.
Show 22 related questions

View options