DP Mathematics SL Questionbank
Areas between curves.
Path: |
Description
[N/A]Directly related questions
- 16M.2.sl.TZ1.2b: Find the area of the region enclosed by the graphs of \(f\) and \(g\).
- 16M.2.sl.TZ1.2a: Solve \(f(x) = g(x)\).
- 16N.2.sl.TZ0.4b: Hence, find the area of the region enclosed by the graphs of \(f\) and \(g\).
- 12N.2.sl.TZ0.9a: Sketch the graph of f , for \( - 1 \le x \le 5\) .
- 12N.2.sl.TZ0.9b: This function can also be written as \(f(x) = {(x - p)^2} - 3\) . Write down the value of p .
- 12N.2.sl.TZ0.9c: The graph of g is obtained by reflecting the graph of f in the x-axis, followed by a translation...
- 12N.2.sl.TZ0.9d: The graph of g is obtained by reflecting the graph of f in the x-axis, followed by a translation...
- 12N.2.sl.TZ0.9e: The graph of \(g\) is obtained by reflecting the graph of \(f\) in the x-axis, followed by a...
- 08N.2.sl.TZ0.9c(i) and (ii): The graph of f and the line L intersect at the point (0, 1) and at a second point P. (i) ...
- 08M.2.sl.TZ1.10a(i) and (ii): Let A be the area of the region enclosed by the curves of f and g. (i) Find an expression...
- 08M.2.sl.TZ2.9e(i) and (ii): Let R be the region enclosed by the curve \(y = f(x)\) and the line L. (i) Find an...
- 10N.1.sl.TZ0.10a(i), (ii) and (iii): (i) Show that the gradient of [PQ] is \(\frac{{{a^3}}}{{a - \frac{2}{3}}}\) . (ii) Find...
- 10N.1.sl.TZ0.10b: Given that the area of T is \(2k + 4\) , show that k satisfies the equation...
- 09N.2.sl.TZ0.9d: Let R be the region enclosed by the graphs of f and g . Find the area of R.
- 10M.2.sl.TZ1.9a: Show that \(A = 10\) .
- 10M.2.sl.TZ1.9b: Given that \(f(15) = 3.49\) (correct to 3 significant figures), find the value of k.
- 10M.2.sl.TZ1.9c(i), (ii) and (iii): (i) Using your value of k , find \(f'(x)\) . (ii) Hence, explain why f is a decreasing...
- 10M.2.sl.TZ1.9d: Let \(g(x) = - {x^2} + 12x - 24\) . Find the area enclosed by the graphs of f and g .
- 11M.2.sl.TZ1.6: Let \(f(x) = \cos ({x^2})\) and \(g(x) = {{\rm{e}}^x}\) , for \( - 1.5 \le x \le 0.5\) . Find...
- 13N.1.sl.TZ0.10e: The graph of \(g\) intersects the graph of \(f'\) when \(x = q\). Let \(R\) be the region...
- 18M.2.sl.TZ1.4c: Find the area of the region enclosed by the graphs of f and g.
- 18M.2.sl.TZ1.4b: On the grid above, sketch the graph of g for −2 ≤ x ≤ 4.
- 18M.2.sl.TZ1.4a: Write down the coordinates of the vertex of the graph of g.
- 17N.1.sl.TZ0.8c: Find the \(x\)-coordinate of Q.
- 17N.1.sl.TZ0.8d: Find the area of the region enclosed by the graph of \(f\) and the line \(L\).
- 17N.1.sl.TZ0.8b: Find the equation of \(L\) in the form \(y = ax + b\).
- 17N.1.sl.TZ0.8a: Show that \(f’(1) = 1\).
- 17M.2.sl.TZ1.10c: Let \(d\) be the vertical distance from a point on the graph of \(h\) to the line \(y = x\)....
- 17M.2.sl.TZ1.10b.ii: Hence, find the area of the region enclosed by the graphs of \(h\) and \({h^{ - 1}}\).
- 17M.2.sl.TZ1.10b.i: Find \(\int_{0.111}^{3.31} {\left( {h(x) - x} \right){\text{d}}x} \).
- 17M.2.sl.TZ1.10a.iii: Write down the value of \(k\).
- 17M.2.sl.TZ1.10a.i: Write down the value of \(q\);
- 17M.2.sl.TZ1.10a.ii: Write down the value of \(h\);