DP Mathematics SL Questionbank
Algebraic and geometric approaches to unit vectors; base vectors; \(i\), \(j\) and \(k\).
Path: |
Description
[N/A]Directly related questions
- 18M.2.sl.TZ2.8d: Hence or otherwise find the shortest distance from R to the line through P and Q.
- 18M.2.sl.TZ2.8c: Find the area of triangle PQR.
- 18M.2.sl.TZ2.8b: Find the angle between PQ and PR.
- 18M.2.sl.TZ2.8a.ii: Find \(\left| {\mathop {{\text{PQ}}}\limits^ \to } \right|\).
- 18M.2.sl.TZ2.8a.i: Find \(\mathop {{\text{PQ}}}\limits^ \to \).
- 18M.1.sl.TZ1.9d: Point D is also on L and has coordinates (8, 4, −9). Find the area of triangle OCD.
- 18M.1.sl.TZ1.9c.ii: Write down the value of angle OBA.
- 18M.1.sl.TZ1.9c.i: Find \(\mathop {{\text{OB}}}\limits^ \to \, \bullet \mathop {{\text{AB}}}\limits^ \to \).
- 18M.1.sl.TZ1.9b.ii: Point C (k , 12 , −k) is on L. Show that k = 14.
- 18M.1.sl.TZ1.9b.i: Find a vector equation for L.
- 18M.1.sl.TZ1.9a: Show...
- 18M.1.sl.TZ1.6: Six equilateral triangles, each with side length 3 cm, are arranged to form a hexagon.This is...
- 17N.2.sl.TZ0.3b: Let ...
- 17N.2.sl.TZ0.3a: Find \(\left| {\overrightarrow {{\text{AB}}} } \right|\).
- 08N.1.sl.TZ0.2a(i) and (ii): (i) Find the velocity vector, \(\overrightarrow {{\rm{AB}}} \) . (ii) Find the speed of...
- 08N.2.sl.TZ0.8a(i), (ii) and (iii): (i) Show that...
- 08M.2.sl.TZ1.9a(i) and (ii): (i) Show that...
- 10M.1.sl.TZ2.2b: Find a unit vector in the direction of \(\overrightarrow {{\rm{AB}}} \) .
- 10M.1.sl.TZ2.2c: Show that \(\overrightarrow {{\rm{AB}}} \) is perpendicular to \(\overrightarrow {{\rm{AC}}} \) .
- 10M.1.sl.TZ2.2a: Find \(\overrightarrow {{\rm{BC}}} \) .
- 09N.2.sl.TZ0.10a: Show...
- 09M.1.sl.TZ1.9a: Find (i) \(\overrightarrow {{\rm{PQ}}} \) ; (ii) \(\overrightarrow {{\rm{PR}}} \) .
- 09M.1.sl.TZ2.10c: Let B be the point of intersection of lines \({L_1}\) and \({L_2}\) . (i) Show that...
- 14M.1.sl.TZ1.8a: Show that \(\overrightarrow {{\text{AB}}} =...
- 13N.1.sl.TZ0.1a: \(\overrightarrow {{\text{QP}}} \);
- 13N.1.sl.TZ0.1b: \(\overrightarrow {{\text{OT}}} \).
- 13N.2.sl.TZ0.9c: The point \({\text{Q}}(7, 5, 3)\) lies on \({L_1}\). The point \({\text{R}}\) is the reflection...