Date | May 2014 | Marks available | 1 | Reference code | 14M.1.sl.TZ1.8 |
Level | SL only | Paper | 1 | Time zone | TZ1 |
Command term | Show that | Question number | 8 | Adapted from | N/A |
Question
The line \({L_1}\) passes through the points \(\rm{A}(2, 1, 4)\) and \(\rm{B}(1, 1, 5)\).
Another line \({L_2}\) has equation r = \(\left( \begin{array}{c}4\\7\\ - 4\end{array} \right) + s\left( \begin{array}{c}0\\ - 1\\1\end{array} \right)\) . The lines \({L_1}\) and \({L_2}\) intersect at the point P.
Show that \(\overrightarrow {{\text{AB}}} = \) \(\left( \begin{array}{c} - 1\\0\\1\end{array} \right)\)
Hence, write down a direction vector for \({L_1}\);
Hence, write down a vector equation for \({L_1}\).
Find the coordinates of P.
Write down a direction vector for \({L_2}\).
Hence, find the angle between \({L_1}\) and \({L_2}\).
Markscheme
correct approach A1
eg \(\left( \begin{array}{c}1\\1\\5\end{array} \right) - \left( \begin{array}{l}2\\1\\4\end{array} \right)\), \({\text{AO}} + {\text{OB}}\), \(b - a\)
\(\overrightarrow {{\text{AB}}} = \) \(\left( \begin{array}{c} - 1\\0\\1\end{array} \right)\) AG N0
[1 mark]
correct vector (or any multiple) A1 N1
eg d = \(\left( \begin{array}{c} - 1\\0\\1\end{array} \right)\)
[1 mark]
any correct equation in the form r = a + tb (accept any parameter for t)
where a is \(\left( \begin{array}{c}2\\1\\4\end{array} \right)\) or \(\left( \begin{array}{c}1\\1\\5\end{array} \right)\) , and b is a scalar multiple of \(\left( \begin{array}{c} - 1\\0\\1\end{array} \right)\) A2 N2
eg r = \(\left( \begin{array}{c}1\\1\\5\end{array} \right) + t\left( \begin{array}{c} - 1\\0\\1\end{array} \right),\left( \begin{array}{c}x\\y\\z\end{array} \right) = \left( \begin{array}{c}2 - s\\1\\4 + s\end{array} \right)\)
Note: Award A1 for a + tb, A1 for \({L_1}\) = a + tb, A0 for r = b + ta.
[2 marks]
valid approach (M1)
eg \({r_1} = {r_2}\), \(\left( \begin{array}{c}2\\1\\4\end{array} \right) + t\left( \begin{array}{c} - 1\\0\\1\end{array} \right) = \left( \begin{array}{c}4\\7\\ - 4\end{array} \right) + s\left( \begin{array}{c}0\\ - 1\\1\end{array} \right)\)
one correct equation in one parameter A1
eg \(2 - t = 4, 1 = 7 - s, 1 - t = 4\)
attempt to solve (M1)
eg \(2 - 4 = t, s = 7 - 1, t = 1 - 4\)
one correct parameter A1
eg \(t = -2, s = 6, t = -3\),
attempt to substitute their parameter into vector equation (M1)
eg \(\left( \begin{array}{c}4\\7\\ - 4\end{array} \right) + 6\left( \begin{array}{c}0\\ - 1\\1\end{array} \right)\)
P(4, 1, 2) (accept position vector) A1 N2
[6 marks]
correct direction vector for \({L_2}\) A1 N1
eg \(\left( \begin{array}{c}0\\-1\\ 1\end{array} \right)\), \(\left( \begin{array}{c}0\\2\\ - 2\end{array} \right)\)
[1 mark]
correct scalar product and magnitudes for their direction vectors (A1)(A1)(A1)
scalar product \( = 0 \times - 1 + - 1 \times 0 + 1 \times 1{\text{ }}( = 1)\)
magnitudes \( = \sqrt {{0^2} + {{( - 1)}^2} + {1^2}} ,{\text{ }}\sqrt { - {1^2} + {0^2} + {1^2}} \left( {\sqrt 2 ,{\text{ }}\sqrt 2 } \right)\)
attempt to substitute their values into formula M1
eg \(\frac{{0 + 0 + 1}}{{\left( {\sqrt {{0^2} + {{( - 1)}^2} + {1^2}} } \right) \times \left( {\sqrt { - {1^2} + {0^2} + {1^2}} } \right)}},{\text{ }}\frac{1}{{\sqrt 2 \times \sqrt 2 }}\)
correct value for cosine, \(\frac{1}{2}\) A1
angle is \(\frac{\pi }{3}{\text{ }}( = {60^ \circ })\) A1 N1
[6 marks]