Date | November 2013 | Marks available | 6 | Reference code | 13N.2.sl.TZ0.9 |
Level | SL only | Paper | 2 | Time zone | TZ0 |
Command term | Find | Question number | 9 | Adapted from | N/A |
Question
Consider the lines \({L_1}\) and \({L_2}\) with equations \({L_1}\) : \(\boldsymbol{r}=\left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ - 1\end{array} \right)\) and \({L_2}\) : \(\boldsymbol{r} = \left( \begin{array}{c}1\\1\\ - 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right)\).
The lines intersect at point \(\rm{P}\).
Find the coordinates of \({\text{P}}\).
Show that the lines are perpendicular.
The point \({\text{Q}}(7, 5, 3)\) lies on \({L_1}\). The point \({\text{R}}\) is the reflection of \({\text{Q}}\) in the line \({L_2}\).
Find the coordinates of \({\text{R}}\).
Markscheme
appropriate approach (M1)
eg \(\left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ - 1\end{array} \right) = \left( \begin{array}{c}1\\1\\ - 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right)\), \({L_1} = {L_2}\)
any two correct equations A1A1
eg \(11 + 4s = 1 + 2t,{\text{ }}8 + 3s = 1 + t,{\text{ }}2 - s = - 7 + 11t\)
attempt to solve system of equations (M1)
eg \(10 + 4s = 2(7 + 3s), \left\{ {\begin{array}{*{20}{c}} {4s - 2t = - 10} \\ {3s - t = - 7} \end{array}} \right.\)
one correct parameter A1
eg \(s = - 2,{\text{ }}t = 1\)
\({\text{P}}(3, 2, 4)\) (accept position vector) A1 N3
[6 marks]
choosing correct direction vectors for \({L_1}\) and \({L_2}\) (A1)(A1)
eg \(\left( {\begin{array}{*{20}{c}} 4 \\ 3 \\ { - 1} \end{array}} \right),\left( {\begin{array}{*{20}{c}} 2 \\ 1 \\ {11} \end{array}} \right)\) (or any scalar multiple)
evidence of scalar product (with any vectors) (M1)
eg \(a \cdot b\), \(\left( \begin{array}{c}4\\3\\ - 1\end{array} \right) \bullet \left( \begin{array}{c}2\\1\\11\end{array} \right)\)
correct substitution A1
eg \(4(2) + 3(1) + ( - 1)(11),{\text{ }}8 + 3 - 11\)
calculating \(a \cdot b = 0\) A1
Note: Do not award the final A1 without evidence of calculation.
vectors are perpendicular AG N0
[5 marks]
Note: Candidates may take different approaches, which do not necessarily involve vectors.
In particular, most of the working could be done on a diagram. Award marks in line with the markscheme.
METHOD 1
attempt to find \(\overrightarrow {{\text{QP}}} \) or \(\overrightarrow {{\text{PQ}}} \) (M1)
correct working (may be seen on diagram) A1
eg \(\overrightarrow {{\text{QP}}} \) = \(\left( \begin{array}{c} - 4\\ - 3\\1\end{array} \right)\), \(\overrightarrow {{\text{PQ}}} \) = \(\left( \begin{array}{c}7\\5\\3\end{array} \right) - \left( \begin{array}{c}3\\2\\4\end{array} \right)\)
recognizing \({\text{R}}\) is on \({L_1}\) (seen anywhere) (R1)
eg on diagram
\({\text{Q}}\) and \({\text{R}}\) are equidistant from \({\text{P}}\) (seen anywhere) (R1)
eg \(\overrightarrow {{\text{QP}}} = \overrightarrow {{\text{PR}}} \), marked on diagram
correct working (A1)
eg \(\left( \begin{array}{c}3\\2\\4\end{array} \right) - \left( \begin{array}{c}7\\5\\3\end{array} \right) = \left( \begin{array}{c}x\\y\\z\end{array} \right) - \left( \begin{array}{c}3\\2\\4\end{array} \right),\left( \begin{array}{c} - 4\\ - 3\\1\end{array} \right) + \left( \begin{array}{c}3\\2\\4\end{array} \right)\)
\({\text{R}}(–1, –1, 5)\) (accept position vector) A1 N3
METHOD 2
recognizing \({\text{R}}\) is on \({L_1}\) (seen anywhere) (R1)
eg on diagram
\({\text{Q}}\) and \({\text{R}}\) are equidistant from \({\text{P}}\) (seen anywhere) (R1)
eg \({\text{P}}\) midpoint of \({\text{QR}}\), marked on diagram
valid approach to find one coordinate of mid-point (M1)
eg \({x_p} = \frac{{{x_Q} + {x_R}}}{2},{\text{ }}2{y_p} = {y_Q} + {y_R},{\text{ }}\frac{1}{2}\left( {{z_Q} + {z_R}} \right)\)
one correct substitution A1
eg \({x_R} = 3 + (3 - 7),{\text{ }}2 = \frac{{5 + {y_R}}}{2},{\text{ }}4 = \frac{1}{2}(z + 3)\)
correct working for one coordinate (A1)
eg \({x_R} = 3 - 4,{\text{ }}4 - 5 = {y_R},{\text{ }}8 = (z + 3)\)
\({\text{R}} (-1, -1, 5)\) (accept position vector) A1 N3
[6 marks]