Date | November 2017 | Marks available | 2 | Reference code | 17N.2.sl.TZ0.3 |
Level | SL only | Paper | 2 | Time zone | TZ0 |
Command term | Find | Question number | 3 | Adapted from | N/A |
Question
Let \(\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 4 \\ 1 \\ 2 \end{array}} \right)\).
Find \(\left| {\overrightarrow {{\text{AB}}} } \right|\).
Let \(\overrightarrow {{\text{AC}}} = \left( {\begin{array}{*{20}{c}} 3 \\ 0 \\ 0 \end{array}} \right)\). Find \({\rm{B\hat AC}}\).
Markscheme
correct substitution (A1)
eg\(\,\,\,\,\,\)\(\sqrt {{4^2} + {1^2} + {2^2}} \)
4.58257
\(\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt {21} \) (exact), 4.58 A1 N2
[2 marks]
finding scalar product and \(\left| {\overrightarrow {{\text{AC}}} } \right|\) (A1)(A1)
scalar product \( = (4 \times 3) + (1 \times 0) + (2 \times 0){\text{ }}( = 12)\)
\(\left| {\overrightarrow {{\text{AC}}} } \right| = \sqrt {{3^2} + 0 + 0} {\text{ }}( = 3)\)
substituting their values into cosine formula (M1)
eg cos B\(\hat A\)C\({\text{ = }}\frac{{4 \times 3 + 0 + 0}}{{\sqrt {{3^2}} \times \sqrt {21} }},{\text{ }}\frac{4}{{\sqrt {21} }},{\text{ }}\cos \theta = 0.873\)
0.509739 (29.2059°)
\({\rm{B\hat AC}} = 0.510\) (29.2°) A1 N2
[4 marks]