DP Mathematics SL Questionbank
The discriminant \(\Delta = {b^2} - 4ac\) and the nature of the roots, that is, two distinct real roots, two equal real roots, no real roots.
Path: |
Description
[N/A]Directly related questions
- 18M.1.sl.TZ2.6: Let \(f\left( x \right) = p{x^2} + qx - 4p\), where p ≠ 0. Find Find the number of roots for the...
- 17M.1.sl.TZ1.9c: The line \(y = kx - 5\) is a tangent to the curve of \(f\). Find the values of \(k\).
- 17M.1.sl.TZ1.9b: Find the value of \(a\).
- 17M.1.sl.TZ1.9a: Find the value of \(p\).
- 16M.1.sl.TZ1.7: Let \(f(x) = 3{\tan ^4}x + 2k\) and \(g(x) = - {\tan ^4}x + 8k{\tan ^2}x + k\), for...
- 16N.1.sl.TZ0.7: Let \(f(x) = m - \frac{1}{x}\), for \(x \ne 0\). The line \(y = x - m\) intersects the graph of...
- 12N.1.sl.TZ0.7: The equation \({x^2} - 3x + {k^2} = 4\) has two distinct real roots. Find the possible values of k .
- 12M.1.sl.TZ2.6: Consider the equation \({x^2} + (k - 1)x + 1 = 0\) , where k is a real number. Find the values...
- 09M.2.sl.TZ2.7a: Find the possible values of k.
- 09M.2.sl.TZ2.7b: Write down the values of k for which \({x^2} + (k - 3)x + k = 0\) has two equal real roots.
- 11N.1.sl.TZ0.7b: Each value of k is equally likely for \( - 5 \le k \le 5\) . Find the probability that...
- 11N.1.sl.TZ0.7a: Find the values of k such that \(f(x) = 0\) has two equal roots.
- 11M.1.sl.TZ1.7a: Find the value of k .
- 11M.1.sl.TZ1.7b: The line \(y = p\) intersects the graph of f . Find all possible values of p .
- 14M.1.sl.TZ1.7b: Given that \(f'(x) \geqslant 0\), show that \({p^2} \leqslant 3pq\).
- 14M.1.sl.TZ2.8a(i): Write down the value of the discriminant.
- 14M.1.sl.TZ2.8a(ii): Hence, show that \(p = 3\).
- 13N.1.sl.TZ0.7: The equation \({x^2} + (k + 2)x + 2k = 0\) has two distinct real roots. Find the possible values...
- 15M.1.sl.TZ1.6b: Find the values of \(p\) so that \(f(x) = 0\) has two equal roots.
- 15M.1.sl.TZ1.6a: Show that the discriminant of \(f(x)\) is \(100 - 4{p^2}\).
- 15M.2.sl.TZ2.7: Let \(f(x) = k{x^2} + kx\) and \(g(x) = x - 0.8\). The graphs of \(f\) and \(g\) intersect at two...