Date | November 2013 | Marks available | 8 | Reference code | 13N.1.sl.TZ0.7 |
Level | SL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 7 | Adapted from | N/A |
Question
The equation \({x^2} + (k + 2)x + 2k = 0\) has two distinct real roots.
Find the possible values of \(k\).
Markscheme
evidence of discriminant (M1)
eg \({b^2} - 4ac,{\text{ }}\Delta = 0\)
correct substitution into discriminant (A1)
eg \({(k + 2)^2} - 4(2k),{\text{ }}{k^2} + 4k + 4 - 8k\)
correct discriminant A1
eg \({k^2} - 4k + 4,{\text{ }}{(k - 2)^2}\)
recognizing discriminant is positive R1
eg \(\Delta > 0,{\text{ }}{(k + 2)^2} - 4(2k) > 0\)
attempt to solve their quadratic in \(k\) (M1)
eg factorizing, \(k = \frac{{4 \pm \sqrt {16 - 16} }}{2}\)
correct working A1
eg \({(k - 2)^2} > 0,{\text{ }}k = 2\), sketch of positive parabola on the x-axis
correct values A2 N4
eg \(k \in \mathbb{R}{\text{ and }}k \ne 2,{\text{ }}\mathbb{R}\backslash 2,{\text{ }}\left] { - \infty ,{\text{ }}2} \right[ \cup \left] {2,{\text{ }}\infty } \right[\)
[8 marks]