Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 5 Reference code 14M.1.sl.TZ1.7
Level SL only Paper 1 Time zone TZ1
Command term Show that Question number 7 Adapted from N/A

Question

Let f(x)=px3+px2+qx.

Find f(x).

[2]
a.

Given that f(x), show that {p^2} \leqslant 3pq.

[5]
b.

Markscheme

f'(x) = 3p{x^2} + 2px + q     A2     N2

 

Note:     Award A1 if only 1 error.

 

[2 marks]

a.

evidence of discriminant (must be seen explicitly, not in quadratic formula)     (M1)

eg     {b^2} - 4ac

correct substitution into discriminant (may be seen in inequality)     A1

eg     {(2p)^2} - 4 \times 3p \times q,{\text{ }}4{p^2} - 12pq

f'(x) \geqslant 0 then f' has two equal roots or no roots     (R1)

recognizing discriminant less or equal than zero     R1

eg     \Delta  \leqslant 0,{\text{ }}4{p^2} - 12pq \leqslant 0

correct working that clearly leads to the required answer     A1

eg     {p^2} - 3pq \leqslant 0,{\text{ }}4{p^2} \leqslant 12pq

{p^2} \leqslant 3pq     AG     N0

[5 marks]

b.

Examiners report

[N/A]
a.

 

b.

Syllabus sections

Topic 2 - Functions and equations » 2.7 » The discriminant \Delta = {b^2} - 4ac and the nature of the roots, that is, two distinct real roots, two equal real roots, no real roots.

View options