User interface language: English | Español

Date May 2014 Marks available 5 Reference code 14M.1.sl.TZ1.7
Level SL only Paper 1 Time zone TZ1
Command term Show that Question number 7 Adapted from N/A

Question

Let \(f(x) = p{x^3} + p{x^2} + qx\).

Find \(f'(x)\).

[2]
a.

Given that \(f'(x) \geqslant 0\), show that \({p^2} \leqslant 3pq\).

[5]
b.

Markscheme

\(f'(x) = 3p{x^2} + 2px + q\)     A2     N2

 

Note:     Award A1 if only 1 error.

 

[2 marks]

a.

evidence of discriminant (must be seen explicitly, not in quadratic formula)     (M1)

eg     \({b^2} - 4ac\)

correct substitution into discriminant (may be seen in inequality)     A1

eg     \({(2p)^2} - 4 \times 3p \times q,{\text{ }}4{p^2} - 12pq\)

\(f'(x) \geqslant 0\) then \(f'\) has two equal roots or no roots     (R1)

recognizing discriminant less or equal than zero     R1

eg     \(\Delta  \leqslant 0,{\text{ }}4{p^2} - 12pq \leqslant 0\)

correct working that clearly leads to the required answer     A1

eg     \({p^2} - 3pq \leqslant 0,{\text{ }}4{p^2} \leqslant 12pq\)

\({p^2} \leqslant 3pq\)     AG     N0

[5 marks]

b.

Examiners report

[N/A]
a.

 

b.

Syllabus sections

Topic 2 - Functions and equations » 2.7 » The discriminant \(\Delta = {b^2} - 4ac\) and the nature of the roots, that is, two distinct real roots, two equal real roots, no real roots.

View options