Date | May 2014 | Marks available | 5 | Reference code | 14M.1.sl.TZ1.7 |
Level | SL only | Paper | 1 | Time zone | TZ1 |
Command term | Show that | Question number | 7 | Adapted from | N/A |
Question
Let \(f(x) = p{x^3} + p{x^2} + qx\).
Find \(f'(x)\).
Given that \(f'(x) \geqslant 0\), show that \({p^2} \leqslant 3pq\).
Markscheme
\(f'(x) = 3p{x^2} + 2px + q\) A2 N2
Note: Award A1 if only 1 error.
[2 marks]
evidence of discriminant (must be seen explicitly, not in quadratic formula) (M1)
eg \({b^2} - 4ac\)
correct substitution into discriminant (may be seen in inequality) A1
eg \({(2p)^2} - 4 \times 3p \times q,{\text{ }}4{p^2} - 12pq\)
\(f'(x) \geqslant 0\) then \(f'\) has two equal roots or no roots (R1)
recognizing discriminant less or equal than zero R1
eg \(\Delta \leqslant 0,{\text{ }}4{p^2} - 12pq \leqslant 0\)
correct working that clearly leads to the required answer A1
eg \({p^2} - 3pq \leqslant 0,{\text{ }}4{p^2} \leqslant 12pq\)
\({p^2} \leqslant 3pq\) AG N0
[5 marks]
Examiners report