Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

User interface language: English | Español

Date May 2019 Marks available 5 Reference code 19M.2.SL.TZ2.S_8
Level Standard Level Paper Paper 2 Time zone Time zone 2
Command term Find Question number S_8 Adapted from N/A

Question

In this question distance is in centimetres and time is in seconds.

Particle A is moving along a straight line such that its displacement from a point P, after t seconds, is given by sA=15t6t3e0.8t, 0 ≤ t ≤ 25. This is shown in the following diagram.

Another particle, B, moves along the same line, starting at the same time as particle A. The velocity of particle B is given by vB=82t, 0 ≤ t ≤ 25.

Find the initial displacement of particle A from point P.

[2]
a.

Find the value of t when particle A first reaches point P.

[2]
b.

Find the value of t when particle A first changes direction.

[2]
c.

Find the total distance travelled by particle A in the first 3 seconds.

[3]
d.

Given that particles A and B start at the same point, find the displacement function sB for particle B.

[5]
e.i.

Find the other value of t when particles A and B meet.

[2]
e.ii.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

valid approach       (M1)

eg   sA(0),s(0),t=0

15 (cm)      A1  N2

[2 marks]

a.

valid approach       (M1)

eg  sA=0,s=0,6.79321,14.8651

2.46941

t = 2.47  (seconds)      A1  N2

[2 marks]

b.

recognizing when change in direction occurs      (M1)

eg  slope of s changes sign, s=0, minimum point, 10.0144, (4.08, −4.66)

4.07702

t = 4.08  (seconds)      A1  N2

[2 marks]

c.

METHOD 1 (using displacement)

correct displacement or distance from P at t=3 (seen anywhere)        (A1)

eg   −2.69630,  2.69630

valid approach    (M1)

eg   15 + 2.69630,  s(3)s(0),  −17.6963

17.6963

17.7  (cm)      A1  N2

 

METHOD 2 (using velocity)

attempt to substitute either limits or the velocity function into distance formula involving |v|       (M1)

eg  30|v|dt ,   |118t2e0.8t+4.8t3e0.8t|

17.6963

17.7  (cm)      A1  N2

[3 marks]

d.

recognize the need to integrate velocity       (M1)

eg   v(t)

8t2t22+c  (accept x instead of t and missing c)         (A2)

substituting initial condition into their integrated expression (must have c)        (M1)

eg   15=8(0)2(0)22+c,   c=15

sB(t)=8tt2+15       A1  N3

[5 marks]

e.i.

valid approach      (M1)

eg   sA=sB, sketch, (9.30404, 2.86710)

9.30404

t=9.30 (seconds)     A1  N2

Note: If candidates obtain sB(t)=8tt2 in part (e)(i), there are 2 solutions for part (e)(ii), 1.32463 and 7.79009. Award the last A1 in part (e)(ii) only if both solutions are given.

[2 marks]

e.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.i.
[N/A]
e.ii.

Syllabus sections

Topic 5—Calculus » AHL 5.13—Kinematic problems
Show 63 related questions
Topic 5—Calculus

View options