User interface language: English | Español

Date May 2021 Marks available 3 Reference code 21M.2.AHL.TZ1.6
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Find Question number 6 Adapted from N/A

Question

An ice-skater is skating such that her position vector when viewed from above at time t seconds can be modelled by

xy=aebtcostaebt sint

with respect to a rectangular coordinate system from a point O, where the non-zero constants a and b can be determined. All distances are in metres.

At time t=0, the displacement of the ice-skater is given by 50 and the velocity of the ice‑skater is given by -3.55.

Find the velocity vector at time t.

[3]
a.

Show that the magnitude of the velocity of the ice-skater at time t is given by

aebt1+b2.

[4]
b.

Find the value of a and the value of b.

[3]
c.

Find the magnitude of the velocity of the ice-skater when t=2.

[2]
d.

At a point P, the ice-skater is skating parallel to the y-axis for the first time.

Find OP.

[6]
e.

Markscheme

use of product rule                      (M1)

x˙y˙=abebtcost-aebt sintabebt sint+aebtcost                A1A1

 

[3 marks]

a.

v2=x˙2+y˙2=abebtcost-aebt sint2+abebt sint+aebtcost2                M1


Note:
It is more likely that an expression for v is seen.
         x˙2+y˙2 is not sufficient to award the M1, their part (a) must be substituted.


=a2sin2t-2a2bsintcost+a2b2cos2t+a2cos2t+2a2bsintcost+a2b2sin2te2bt          A1

use of sin2t+cos2t=1 within a factorized expression that leads to the final answer               M1

=a2b2+1e2bt          A1

magnitude of velocity is aebt1+b2          AG


[4 marks]

b.

when t=0,  aebtcost=5

a=5          A1

abebtcost-aebtsint=-3.5          (M1)

b=-0.7          A1


Note:
Use of aebt1+b2 result from part (b) is an alternative approach.


[3 marks]

c.

5e-0.7×21+-0.72          (M1)

1.51  (1.50504)          A1


[2 marks]

d.

x˙=0         (M1)

aebtbcost-sint=0

tant=b

t=2.53  2.53086         (A1)

correct substitution of their t to find x or y         (M1)
x=-0.697  -0.696591  and  y=0.488  0.487614         (A1)

use of Pythagoras / distance formula         (M1)
OP=0.850 m  0.850297         A1


[6 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 3—Geometry and trigonometry » AHL 3.12—Vector applications to kinematics
Show 28 related questions
Topic 5—Calculus » AHL 5.13—Kinematic problems
Topic 3—Geometry and trigonometry
Topic 5—Calculus

View options