User interface language: English | Español

Date May 2021 Marks available 2 Reference code 21M.2.AHL.TZ2.6
Level Additional Higher Level Paper Paper 2 Time zone Time zone 2
Command term Show that Question number 6 Adapted from N/A

Question

A continuous random variable X has the probability density function fn given by

fnx=n+1xn,     0,  0x1otherwise

where n, n0.

Show that EX=n+1n+2.

[2]
a.

Show that VarX=n+1n+22n+3.

[4]
b.

Markscheme

EX=n+101xn+1dx                       M1

=n+1xn+2n+201                         A1

leading to EX=n+1n+2                   AG

 

[2 marks]

a.

METHOD 1

use of VarX=EX2-EX2                  M1

VarX=n+101xn+2dx-n+1n+22

=n+11n+3xn+301-n+1n+22

=n+1n+3-n+1n+22                       A1

=n+1n+22-n+12n+3n+22n+3                  M1


EITHER

=n+1n2+4n+4-n2+4n+3n+22n+3                       A1


OR

=n3+5n2+8n+4-n3+5n2+7n+3n+22n+3                       A1


THEN

so VarX=n+1n+22n+3                       AG

 

METHOD 2

use of VarX=EX-EX2                  M1

VarX=n+101x-n+1n+22xndx

=n+11n+3xn+3-2n+1n+22xn+2+n+1n+22xn+101

=n+1n+3-n+1n+22                       A1

=n+1n+22-n+1n+3n+22n+3                  M1


EITHER

=n+1n2+4n+4-n2+4n+3n+22n+3                       A1


OR

=n3+5n2+8n+4-n3+5n2+7n+3n+22n+3                       A1


THEN

so VarX=n+1n+22n+3                       AG

 

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 4—Statistics and probability » AHL 4.14—Properties of discrete and continuous random variables
Show 46 related questions
Topic 4—Statistics and probability

View options