User interface language: English | Español

Date May Specimen paper Marks available 7 Reference code SPM.1.AHL.TZ0.7
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number 7 Adapted from N/A

Question

A continuous random variable X has the probability density function f given by

f ( x ) = { π x 36 sin ( π x 6 ) , 0 x 6 0 , otherwise .

Find P(0 ≤ X ≤ 3).

Markscheme

attempting integration by parts, eg

u = π x 36 , d u = π 36 d x , d v = sin ( π x 6 ) d x , v = 6 π cos ( π x 6 )                (M1)

P(0 ≤ X ≤ 3)  = π 36 ( [ 6 x π cos ( π x 6 ) ] 0 3 + 6 π 0 3 cos ( π x 6 ) d x )  (or equivalent)      A1A1

Note: Award A1 for a correct u v and A1 for a correct  v d u .

attempting to substitute limits       M1

π 36 [ 6 x π cos ( π x 6 ) ] 0 3 = 0        (A1)

so P(0 ≤ X ≤ 3)  = 1 π [ sin ( π x 6 ) ] 0 3  (or equivalent)       A1

= 1 π       A1

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 4—Statistics and probability » AHL 4.14—Properties of discrete and continuous random variables
Show 46 related questions
Topic 4—Statistics and probability

View options