Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date May Specimen paper Marks available 7 Reference code SPM.1.AHL.TZ0.7
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number 7 Adapted from N/A

Question

A continuous random variable X has the probability density function f given by

f(x)={πx36sin(πx6),0x60,otherwise.

Find P(0 ≤ X ≤ 3).

Markscheme

attempting integration by parts, eg

u=πx36,du=π36dx,dv=sin(πx6)dx,v=6πcos(πx6)               (M1)

P(0 ≤ X ≤ 3) =π36([6xπcos(πx6)]30+6π30cos(πx6)dx) (or equivalent)      A1A1

Note: Award A1 for a correct uv and A1 for a correct vdu.

attempting to substitute limits       M1

π36[6xπcos(πx6)]30=0       (A1)

so P(0 ≤ X ≤ 3) =1π[sin(πx6)]30 (or equivalent)       A1

=1π      A1

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 4—Statistics and probability » AHL 4.14—Properties of discrete and continuous random variables
Show 46 related questions
Topic 4—Statistics and probability

View options