User interface language: English | Español

Date May 2019 Marks available 4 Reference code 19M.1.AHL.TZ2.H_10
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Show that Question number H_10 Adapted from N/A

Question

The random variable X has probability density function f given by

f ( x ) = { k ( π arcsin x ) 0 x 1 0 otherwise , where  k  is a positive constant .

Given that  y = ( x 2 2 ) arcsin x ( 1 4 ) arcsin x + ( x 4 ) 1 x 2 , show that

State the mode of X .

[1]
a.

Find  arcsin x d x .

[3]
b.i.

Hence show that k = 2 2 + π .

[3]
b.ii.

d y d x = x arcsin x .

[4]
c.i.

E ( X ) = 3 π 4 ( π + 2 ) .

[5]
c.ii.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

mode is 0    A1

[1 mark]

a.

attempt at integration by parts      (M1)

d u d x = 1 1 x 2 , d v = d x

= x arcsin x x d x 1 x 2     A1

= x arcsin x + 1 x 2 ( + c )     A1

[3 marks]

b.i.

0 1 ( π arcsin x ) d x = [ π x x arcsin x 1 x 2 ] 0 1    A1

= ( π π 2 0 ) ( 0 0 1 ) = π 2 + 1

= π + 2 2     A1

0 1 k ( π arcsin x ) d x = 1    (M1)

Note: This line can be seen (or implied) anywhere.

Note: Do not allow FT A marks from bi to bii.

k ( π + 2 2 ) = 1

k = 2 2 + π     AG

[3 marks]

b.ii.

attempt to use product rule to differentiate    M1

d y d x = x arcsin x + x 2 2 1 x 2 1 4 1 x 2 x 2 4 1 x 2 + 1 x 2 4   A2

Note: Award A2 for all terms correct, A1 for 4 correct terms.

= x arcsin x + 2 x 2 4 1 x 2 1 4 1 x 2 x 2 4 1 x 2 + 1 x 2 4 1 x 2     A1

Note: Award A1 for equivalent combination of correct terms over a common denominator.

= x arcsin x     AG

[4 marks]

c.i.

E ( X ) = k 0 1 x ( π arcsin x ) d x     M1

= k 0 1 ( π x x arcsin x ) d x

= k [ π x 2 2 x 2 2 arcsin x + 1 4 arcsin x x 4 1 x 2 ] 0 1       A1A1

Note: Award A1 for first term, A1 for next 3 terms.

= k [ ( π 2 π 4 + π 8 ) ( 0 ) ]       A1

= ( 2 2 + π ) 3 π 8       A1

= 3 π 4 ( π + 2 )     AG

[5 marks]

c.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.i.
[N/A]
c.ii.

Syllabus sections

Topic 4—Statistics and probability » AHL 4.14—Properties of discrete and continuous random variables
Show 46 related questions
Topic 4—Statistics and probability

View options