User interface language: English | Español

Date May 2021 Marks available 4 Reference code 21M.2.AHL.TZ2.9
Level Additional Higher Level Paper Paper 2 Time zone Time zone 2
Command term Show that Question number 9 Adapted from N/A

Question

Write down the first three terms of the binomial expansion of (1+t)-1 in ascending powers of t.

[1]
a.

By using the Maclaurin series for cosx and the result from part (a), show that the Maclaurin series for secx up to and including the term in x4 is 1+x22+5x424.

[4]
b.

By using the Maclaurin series for arctanx and the result from part (b), find limx0x arctan2xsecx-1.

[3]
c.

Markscheme

1-t+t2               A1


Note: Accept 1, -t and t2.

 

[1 mark]

a.

secx=11-x22!+x44!- =1-x22!+x44!--1                (M1)

t=cosx-1  or  secx=1-cosx-1+cosx-12               (M1)

=1--x22!+x44!-+-x22!+x44!-2               A1

=1+x22-x424+x44               A1

so the Maclaurin series for secx up to and including the term in x4 is 1+x22+5x424               AG


Note:
Condone the absence of ‘…’ 

 

[4 marks]

b.

arctan2x=2x-2x33+

limx0x arctan2xsecx-1=limx0x2x-2x33+1+x22+5x424-1                      M1

=limx02x2-8x43+x22+5x424              A1

=limx02x21-4x23x221+5x212

=4              A1

 

Note: Condone missing ‘lim’ and errors in higher derivatives.
Do not award M1 unless x is replaced by 2x in arctan.

 

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 —Calculus » AHL 5.19—Maclaurin series
Show 43 related questions
Topic 5 —Calculus

View options