User interface language: English | Español

Date November 2019 Marks available 8 Reference code 19N.3.AHL.TZ0.Hca_3
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Find Question number Hca_3 Adapted from N/A

Question

The function f is defined by  f ( x ) = arcsin ( 2 x ) , where 1 2 x 1 2 .

By finding a suitable number of derivatives of f , find the first two non-zero terms in the Maclaurin series for f .

[8]
a.

Hence or otherwise, find lim x 0 arcsin ( 2 x ) 2 x ( 2 x ) 3 .

[3]
b.

Markscheme

f ( x ) = arcsin ( 2 x )

f ( x ) = 2 1 4 x 2        M1A1

Note: Award M1A0 for  f ( x ) = 1 1 4 x 2

f ( x ) = 8 x ( 1 4 x 2 ) 3 2         A1

EITHER

f ( x ) = 8 ( 1 4 x 2 ) 3 2 8 x ( 3 2 ( 8 x ) ( 1 4 x 2 ) 1 2 ) ( 1 4 x 2 ) 3 ( = 8 ( 1 4 x 2 ) 3 2 + 96 x 2 ( 1 4 x 2 ) 1 2 ( 1 4 x 2 ) 3 )         A1

OR

f ( x ) = 8 ( 1 4 x 2 ) 3 2 + 8 x ( 3 2 ( 1 4 x 2 ) 5 2 ) ( 8 x ) ( = 8 ( 1 4 x 2 ) 3 2 + 96 x 2 ( 1 4 x 2 ) 5 2 )         A1

THEN

substitute x = 0 into f or any of its derivatives         (M1)

f ( 0 ) = 0 f ( 0 ) = 2 and  f ( 0 ) = 0         A1

f ( 0 ) = 8

the Maclaurin series is

f ( x ) = 2 x + 8 x 3 6 + ( = 2 x + 4 x 3 3 + )          (M1)A1

[8 marks]

a.

METHOD 1

lim x 0 arcsin ( 2 x ) 2 x ( 2 x ) 3 = lim x 0 2 x + 4 x 3 3 + 2 x 8 x 3        M1

= lim x 0 4 3 +  terms with  x 8          (M1)

= 1 6         A1

Note: Condone the omission of +… in their working.

 

METHOD 2

lim x 0 arcsin ( 2 x ) 2 x ( 2 x ) 3 = 0 0   indeterminate form, using L’Hôpital’s rule

= lim x 0 2 1 4 x 2 2 24 x 2          M1

= 0 0   indeterminate form, using L’Hôpital’s rule again

= lim x 0 8 x ( 1 4 x 2 ) 3 2 48 x ( = lim x 0 1 6 ( 1 4 x 2 ) 3 2 )          M1

Note: Award M1 only if their previous expression is in indeterminate form.

= 1 6         A1

Note: Award FT for use of their derivatives from part (a).

 

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 —Calculus » AHL 5.19—Maclaurin series
Show 43 related questions
Topic 5 —Calculus

View options