User interface language: English | Español

Date May Specimen paper Marks available 8 Reference code SPM.1.AHL.TZ0.12
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Hence and Find Question number 12 Adapted from N/A

Question

The function f is defined by  f ( x ) = e sin x .

Find the first two derivatives of f ( x ) and hence find the Maclaurin series for f ( x ) up to and including the  x 2 term.

[8]
a.

Show that the coefficient of x 3 in the Maclaurin series for f ( x ) is zero.

[4]
b.

Using the Maclaurin series for arctan x and e 3 x 1 , find the Maclaurin series for arctan ( e 3 x 1 ) up to and including the x 3 term.

[6]
c.

Hence, or otherwise, find lim x 0 f ( x ) 1 arctan ( e 3 x 1 ) .

[3]
d.

Markscheme

attempting to use the chain rule to find the first derivative     M1

f ( x ) = ( cos x ) e sin x        A1

attempting to use the product rule to find the second derivative      M1

f ( x ) = e sin x ( co s 2 x sin x ) (or equivalent)        A1

attempting to find  f ( 0 ) f ( 0 ) and  f ( 0 )        M1

f ( 0 ) = 1 ; f ( 0 ) = ( cos 0 ) e sin 0 = 1 f ( 0 ) = e sin 0 ( co s 2 0 sin 0 ) = 1         A1

substitution into the Maclaurin formula  f ( x ) = f ( 0 ) + x f ( 0 ) + x 2 2 ! f ( 0 ) +        M1

so the Maclaurin series for f ( x ) up to and including the x 2 term is  1 + x + x 2 2       A1

[8 marks]

a.

METHOD 1

attempting to differentiate  f ( x )        M1

f ( x ) = ( cos x ) e sin x ( co s 2 x sin x ) ( cos x ) e sin x ( 2 sin x + 1 )  (or equivalent)        A2

substituting x = 0 into their f ( x )        M1

f ( 0 ) = 1 ( 1 0 ) 1 ( 0 + 1 ) = 0

so the coefficient of  x 3 in the Maclaurin series for  f ( x ) is zero    AG

 

METHOD 2

substituting sin x into the Maclaurin series for e x        (M1)

e sin x = 1 + sin x + si n 2 x 2 ! + si n 3 x 3 ! +

substituting Maclaurin series for sin x       M1

e sin x = 1 + ( x x 3 3 ! + ) + ( x x 3 3 ! + ) 2 2 ! + ( x x 3 3 ! + ) 3 3 ! +      A1

coefficient of  x 3 is  1 3 ! + 1 3 ! = 0      A1

so the coefficient of  x 3 in the Maclaurin series for  f ( x ) is zero    AG

 

[4 marks]

b.

substituting 3 x into the Maclaurin series for e x        M1

e 3 x = 1 + 3 x + ( 3 x ) 2 2 ! + ( 3 x ) 3 3 ! +       A1

substituting ( e 3 x 1 ) into the Maclaurin series for arctan x     M1

arctan ( e 3 x 1 ) = ( e 3 x 1 ) ( e 3 x 1 ) 3 3 + ( e 3 x 1 ) 5 5

= ( 3 x + ( 3 x ) 2 2 ! + ( 3 x ) 3 3 ! + ) ( 3 x + ( 3 x ) 2 2 ! + ( 3 x ) 3 3 ! + ) 3 3 +     A1

selecting correct terms from above      M1

= ( 3 x + ( 3 x ) 2 2 ! + ( 3 x ) 3 3 ! ) ( 3 x ) 3 3

= 3 x + 9 x 2 2 9 x 3 2      A1

[6 marks]

c.

METHOD 1

substitution of their series       M1

lim x 0 x + x 2 2 + 3 x + 9 x 2 2 +        A1

= lim x 0 1 + x 2 + 3 + 9 x 2 +

= 1 3      A1

 

METHOD 2

use of l’Hôpital’s rule      M1

lim x 0 ( cos x ) e sin x 3 e 3 x 1 + ( e 3 x 1 ) 2   (or equivalent)    A1

= 1 3      A1

 

[3 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 5 —Calculus » AHL 5.19—Maclaurin series
Show 43 related questions
Topic 5 —Calculus

View options