Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date May 2019 Marks available 3 Reference code 19M.2.AHL.TZ1.H_2
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Solve Question number H_2 Adapted from N/A

Question

Solve z2=4eπ2i, giving your answers in the form

reiθ where rθRr>0.

[3]
a.

a+ib where a, bR.

[2]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

z=2eπ4i(=2e0.785i)      A1

Note: Accept all answers in the form 2e(π4+2πn)i.

z=2e5π4i(=2e3.93i)  OR  z=2e3π4i(=2e2.36i)       (M1)A1

Note: Accept all answers in the form 2e(3π4+2πn)i.

Note: Award M1A0 for correct answers in the incorrect form, eg 2eπ4i.

[3 marks]

a.

z=1.41+1.41iz=1.411.41i       A1A1

(z=2+2i,z=22i)

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1—Number and algebra » AHL 1.14—Complex roots of polynomials, conjugate roots, De Moivre’s, powers & roots of complex numbers
Show 55 related questions
Topic 1—Number and algebra

View options