User interface language: English | Español

Date November 2018 Marks available 7 Reference code 18N.1.AHL.TZ0.H_8
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Show that Question number H_8 Adapted from N/A

Question

Consider the equation z 4 + a z 3 + b z 2 + c z + d = 0 , where  a b c , d R and  z C .

Two of the roots of the equation are log26 and i 3 and the sum of all the roots is 3 + log23.

Show that 6 a + d + 12 = 0.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

i 3  is a root      (A1)

3 + lo g 2 3 lo g 2 6 ( = 3 + lo g 2 1 2 = 3 1 = 2 ) is a root       (A1)

sum of roots:  a = 3 + lo g 2 3 a = 3 lo g 2 3      M1

Note: Award M1 for use of a is equal to the sum of the roots, do not award if minus is missing.

Note: If expanding the factored form of the equation, award M1 for equating a to the coefficient of z 3 .

 

product of roots:  ( 1 ) 4 d           = 2 ( lo g 2 6 ) ( i 3 ) ( i 3 )       M1

                                                    = 6 lo g 2 6       A1

Note: Award M1A0 for  d = 6 lo g 2 6

 

6 a + d + 12 = 18 6 lo g 2 3 + 6 lo g 2 6 + 12

 

EITHER

= 6 + 6 lo g 2 2 = 0       M1A1AG

Note: M1 is for a correct use of one of the log laws.

OR

= 6 6 lo g 2 3 + 6 lo g 2 3 + 6 lo g 2 2 = 0        M1A1AG

Note: M1 is for a correct use of one of the log laws.

 

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2—Functions » AHL 2.12—Factor and remainder theorems, sum and product of roots
Show 28 related questions
Topic 1—Number and algebra » AHL 1.14—Complex roots of polynomials, conjugate roots, De Moivre’s, powers & roots of complex numbers
Topic 1—Number and algebra
Topic 2—Functions

View options