Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date November 2019 Marks available 4 Reference code 19N.2.AHL.TZ0.H_10
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number H_10 Adapted from N/A

Question

A random variable X has probability density function

f(x)={3a,0x<2a(x5)(1x),2xbabR+3<b5.0,otherwise

 

Consider the case where b=5.

Find the value of

Find, in terms of a, the probability that X lies between 1 and 3.

[4]
a.

Sketch the graph of f. State the coordinates of the end points and any local maximum or minimum points, giving your answers in terms of a.

[4]
b.

a.

[4]
c.i.

E(X).

[3]
c.ii.

the median of X.

[4]
c.iii.

Markscheme

(P(1<X<3)=)213adx+a32x2+6x5dx       (M1)(A1)(A1)

=3a+113a

=203a(=6.67a)        A1

[4 marks]

a.

        A4

award A1 for (0, 3a), A1 for continuity at (2, 3a), A1 for maximum at (3, 4a), A1 for (5, 0)

Note: Award A3 if correct four points are not joined by a straight line and a quadratic curve.

[4 marks]

b.

P(0X5)=6a+a52x2+6x5dx       (M1)

=15a       (A1)

15a=1       (M1)

a=115(=0.0667)       A1

[4 marks]

c.i.

E(X)=1520xdx+11552x3+6x25xdx       (M1)(A1)

= 2.35       A1

[3 marks]

c.ii.

attempt to use m0f(x)dx=0.5       (M1)

0.4+am2x2+6x5dx=0.5       (A1)

am2x2+6x5dx=0.1

attempt to solve integral using GDC and/or analytically       (M1)

115[13x3+3x25x]m2=0.1

m=2.44       A1

[4 marks]

c.iii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
c.iii.

Syllabus sections

Topic 4—Statistics and probability » SL 4.7—Discrete random variables
Show 90 related questions
Topic 1—Number and algebra » AHL 1.14—Complex roots of polynomials, conjugate roots, De Moivre’s, powers & roots of complex numbers
Topic 1—Number and algebra
Topic 4—Statistics and probability

View options