User interface language: English | Español

Date November 2017 Marks available 7 Reference code 17N.1.AHL.TZ0.H_8
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Determine Question number H_8 Adapted from N/A

Question

Determine the roots of the equation ( z + 2 i ) 3 = 216 i , z C , giving the answers in the form z = a 3 + b i where a ,   b Z .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

216 i = 216 ( cos π 2 + i sin π 2 )     A1

z + 2 i = 216 3 ( cos ( π 2 + 2 π k ) = i sin ( π 2 + 2 π k ) ) 1 3     (M1)

z + 2 i = 6 ( cos ( π 6 + 2 π k 3 ) + i sin ( π 6 + 2 π k 3 ) )     A1

z 1 + 2 i = 6 ( cos π 6 + i sin π 6 ) = 6 ( 3 2 + i 2 ) = 3 3 + 3 i

z 2 + 2 i = 6 ( cos 5 π 6 + i sin 5 π 6 ) = 6 ( 3 2 + i 2 ) = 3 3 + 3 i

z 3 + 2 i = 6 ( cos 3 π 2 + i sin 3 π 2 ) = 6 i     A2

 

Note:     Award A1A0 for one correct root.

 

so roots are z 1 = 3 3 + i,  z 2 = 3 3 + i and z 3 = 8 i     M1A1

 

Note:     Award M1 for subtracting 2i from their three roots.

 

METHOD 2

( a 3 + ( b + 2 ) i ) 3 = 216 i

( a 3 ) 3 + 3 ( a 3 ) 2 ( b + 2 ) i 3 ( a 3 ) ( b + 2 ) 2 i ( b + 2 ) 3 = 216 i     M1A1

( a 3 ) 3 3 ( a 3 ) ( b + 2 ) 2 + i ( 3 ( a 3 ) 2 ( b + 2 ) ( b + 2 ) 3 ) = 216 i

( a 3 ) 3 3 ( a 3 ) ( b + 2 ) 2 = 0 and 3 ( a 3 ) 2 ( b + 2 ) ( b + 2 ) 3 = 216     M1A1

a ( a 2 ( b + 2 ) 2 ) = 0 and 9 a 2 ( b + 2 ) ( b + 2 ) 3 = 216

a = 0 or a 2 = ( b + 2 ) 2

if a = 0 ,   ( b + 2 ) 3 = 216 b + 2 = 6

b = 8     A1

( a ,   b ) = ( 0 ,   8 )

if a 2 = ( b + 2 ) 2 ,   9 ( b + 2 ) 2 ( b + 2 ) ( b + 2 ) 3 = 216

8 ( b + 2 ) 3 = 216

( b + 2 ) 3 = 27

b + 2 = 3

b = 1

a 2 = 9 a = ± 3

( a ,   b ) = ( ± 3 ,   1 )     A1A1

so roots are z 1 = 3 3 + i,  z 2 = 3 3 + i and z 3 = 8 i

 

METHOD 3

( z + 2 i ) 3 ( 6 i ) 3 = 0

attempt to factorise:     M1

( ( z + 2 i ) ( 6 i ) ) ( ( z + 2 i ) 2 + ( z + 2 i ) ( 6 i ) + ( 6 i ) 2 ) = 0     A1

( z + 8 i ) ( z 2 2 i z 28 ) = 0     A1

z + 8 i = 0 z = 8 i     A1

z 2 2 i z 28 = 0 z = 2 i ± 4 ( 4 × 1 × 28 ) 2     M1

z = 2 i ± 108 2

z = 2 i ± 6 3 2

z = i ± 3 3     A1A1

 

Special Case:

Note:     If a candidate recognises that 216 i 3 = 6 i (anywhere seen), and makes no valid progress in finding three roots, award A1 only.

 

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1—Number and algebra » AHL 1.14—Complex roots of polynomials, conjugate roots, De Moivre’s, powers & roots of complex numbers
Show 55 related questions
Topic 1—Number and algebra

View options