User interface language: English | Español

Date November 2016 Marks available 5 Reference code 16N.1.AHL.TZ0.H_12
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number H_12 Adapted from N/A

Question

Let ω be one of the non-real solutions of the equation z 3 = 1 .

Consider the complex numbers p = 1 3 i and q = x + ( 2 x + 1 ) i , where x R .

Determine the value of

(i)     1 + ω + ω 2 ;

(ii)     1 + ω * + ( ω * ) 2 .

[4]
a.

Show that ( ω 3 ω 2 ) ( ω 2 3 ω ) = 13 .

[4]
b.

Find the values of x that satisfy the equation | p | = | q | .

[5]
c.

Solve the inequality Re ( p q ) + 8 < ( Im ( p q ) ) 2 .

[6]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

(i)     METHOD 1

1 + ω + ω 2 = 1 ω 3 1 ω = 0    A1

as ω 1      R1

METHOD 2

solutions of 1 ω 3 = 0  are ω = 1 ,   ω  =  1 ± 3 i 2      A1

verification that the sum of these roots is 0     R1

(ii)     1 + ω * + ( ω * ) 2 = 0      A2

[4 marks]

a.

( ω 3 ω 2 ) ( ω 2 3 ω ) = 3 ω 4 + 10 ω 3 3 ω 2    M1A1

EITHER

= 3 ω 2 ( ω 2 + ω + 1 ) + 13 ω 3    M1

= 3 ω 2 × 0 + 13 × 1    A1

OR

= 3 ω + 10 3 ω 2 = 3 ( ω 2 + ω + 1 ) + 13    M1

= 3 × 0 + 13     A1

OR

substitution by ω = 1 ± 3 i 2  in any form     M1

numerical values of each term seen     A1

THEN

= 13    AG

[4 marks]

b.

| p | = | q | 1 2 + 3 2 = x 2 + ( 2 x + 1 ) 2    (M1)(A1)

5 x 2 + 4 x 9 = 0    A1

( 5 x + 9 ) ( x 1 ) = 0    (M1)

x = 1 ,   x = 9 5    A1

[5 marks]

c.

p q = ( 1 3 i ) ( x + ( 2 x + 1 ) i ) = ( 7 x + 3 ) + ( 1 x ) i    M1A1

Re ( p q ) + 8 < ( Im ( p q ) ) 2 ( 7 x + 3 ) + 8 < ( 1 x ) 2    M1

x 2 9 x 10 > 0    A1

( x + 1 ) ( x 10 ) > 0    M1

x < 1 ,   x > 10    A1

[6 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 1—Number and algebra » AHL 1.12—Complex numbers – Cartesian form and Argand diag
Show 43 related questions
Topic 1—Number and algebra » AHL 1.14—Complex roots of polynomials, conjugate roots, De Moivre’s, powers & roots of complex numbers
Topic 1—Number and algebra

View options