DP Mathematics HL Questionbank
9.7
Path: |
Description
[N/A]Directly related questions
- 16N.3ca.hl.TZ0.3a: Using l’Hôpital’s rule, find...
- 17M.3ca.hl.TZ0.1: Use l’Hôpital’s rule to determine the value...
- 12M.3ca.hl.TZ0.1: Use L’Hôpital’s Rule to find...
- 08M.3ca.hl.TZ1.2: (a) Using l’Hopital’s Rule, show that...
- 08M.3ca.hl.TZ2.1a: Find the value of...
- 08M.3ca.hl.TZ2.1b: By using the series expansions for \({{\text{e}}^{{x^2}}}\) and cos x evaluate...
- 08N.3ca.hl.TZ0.4: (a) Show that the solution of the differential...
- 11M.3ca.hl.TZ0.1b: Hence, or otherwise, determine the value of...
- 09M.3ca.hl.TZ0.1a: Find \(\mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{{x + {x^2}}}\) ;
- 09M.3ca.hl.TZ0.1b: Find...
- 09N.3ca.hl.TZ0.2: The function f is defined by \(f(x) = {{\text{e}}^{({{\text{e}}^x} - 1)}}\) . (a) Assuming...
- SPNone.3ca.hl.TZ0.1c: Determine the value of \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln (1 + \sin x) - x}}{{{x^2}}}\).
- 10M.3ca.hl.TZ0.4: (a) Using the Maclaurin series for \({(1 + x)^n}\), write down and simplify the Maclaurin...
- 10N.3ca.hl.TZ0.1: Find \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - \cos {x^6}}}{{{x^{12}}}}} \right)\).
- 13M.3ca.hl.TZ0.1b: Hence, or otherwise, find the value of...
- 11N.3ca.hl.TZ0.1: Find...
- 14M.3ca.hl.TZ0.1c: Hence find the value of \(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{1 - f(x)}}{{{x^2}}}\).
- 13N.3ca.hl.TZ0.4a: Using the result \(\mathop {{\text{lim}}}\limits_{t \to 0} \frac{{\sin t}}{t} = 1\), or...
Sub sections and their related questions
The evaluation of limits of the form \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}}\) and \(\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}}\) .
- 12M.3ca.hl.TZ0.1: Use L’Hôpital’s Rule to find...
- 08M.3ca.hl.TZ2.1b: By using the series expansions for \({{\text{e}}^{{x^2}}}\) and cos x evaluate...
- 11M.3ca.hl.TZ0.1b: Hence, or otherwise, determine the value of...
- 09N.3ca.hl.TZ0.2: The function f is defined by \(f(x) = {{\text{e}}^{({{\text{e}}^x} - 1)}}\) . (a) Assuming...
- SPNone.3ca.hl.TZ0.1c: Determine the value of \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln (1 + \sin x) - x}}{{{x^2}}}\).
- 10M.3ca.hl.TZ0.4: (a) Using the Maclaurin series for \({(1 + x)^n}\), write down and simplify the Maclaurin...
- 10N.3ca.hl.TZ0.1: Find \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - \cos {x^6}}}{{{x^{12}}}}} \right)\).
- 13M.3ca.hl.TZ0.1b: Hence, or otherwise, find the value of...
- 11N.3ca.hl.TZ0.1: Find...
- 14M.3ca.hl.TZ0.1c: Hence find the value of \(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{1 - f(x)}}{{{x^2}}}\).
- 13N.3ca.hl.TZ0.4a: Using the result \(\mathop {{\text{lim}}}\limits_{t \to 0} \frac{{\sin t}}{t} = 1\), or...
- 16N.3ca.hl.TZ0.3a: Using l’Hôpital’s rule, find...
Using l’Hôpital’s rule or the Taylor series.
- 12M.3ca.hl.TZ0.1: Use L’Hôpital’s Rule to find...
- 08M.3ca.hl.TZ1.2: (a) Using l’Hopital’s Rule, show that...
- 08M.3ca.hl.TZ2.1a: Find the value of...
- 08M.3ca.hl.TZ2.1b: By using the series expansions for \({{\text{e}}^{{x^2}}}\) and cos x evaluate...
- 08N.3ca.hl.TZ0.4: (a) Show that the solution of the differential...
- 11M.3ca.hl.TZ0.1b: Hence, or otherwise, determine the value of...
- 09M.3ca.hl.TZ0.1a: Find \(\mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{{x + {x^2}}}\) ;
- 09M.3ca.hl.TZ0.1b: Find...
- 09N.3ca.hl.TZ0.2: The function f is defined by \(f(x) = {{\text{e}}^{({{\text{e}}^x} - 1)}}\) . (a) Assuming...
- SPNone.3ca.hl.TZ0.1c: Determine the value of \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln (1 + \sin x) - x}}{{{x^2}}}\).
- 10M.3ca.hl.TZ0.4: (a) Using the Maclaurin series for \({(1 + x)^n}\), write down and simplify the Maclaurin...
- 10N.3ca.hl.TZ0.1: Find \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - \cos {x^6}}}{{{x^{12}}}}} \right)\).
- 16N.3ca.hl.TZ0.3a: Using l’Hôpital’s rule, find...