Date | May 2008 | Marks available | 3 | Reference code | 08M.3ca.hl.TZ2.1 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ2 |
Command term | Find | Question number | 1 | Adapted from | N/A |
Question
Find the value of \(\mathop {\lim }\limits_{x \to 1} \left( {\frac{{\ln x}}{{\sin 2\pi x}}} \right)\).
By using the series expansions for \({{\text{e}}^{{x^2}}}\) and cos x evaluate \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - {{\text{e}}^{{x^2}}}}}{{1 - \cos x}}} \right).\).
Markscheme
Using l’Hopital’s rule,
\(\mathop {\lim }\limits_{x \to 1} \left( {\frac{{\ln x}}{{\sin 2\pi x}}} \right) = \mathop {\lim }\limits_{x \to 1} \left( {\frac{{\frac{1}{x}}}{{2\pi \cos 2\pi x}}} \right)\) M1A1
\( = \frac{1}{{2\pi }}\) A1
[3 marks]
\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - {{\text{e}}^{{x^2}}}}}{{1 - \cos x}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - \left( {1 + {x^2} + \frac{{{x^4}}}{{2!}} + \frac{{{x^6}}}{{3!}} + ...} \right)}}{{1 - \left( {1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - ...} \right)}}} \right)\) M1A1A1
Note: Award M1 for evidence of using the two series.
\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - {x^2} - \frac{{{x^4}}}{{2!}} - \frac{{{x^6}}}{{3!}} - ...} \right)}}{{\left( {\frac{{{x^2}}}{{2!}} - \frac{{{x^4}}}{{4!}} + ...} \right)}}} \right)\) A1
EITHER
\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - 1 - \frac{{{x^2}}}{{2!}} - \frac{{{x^4}}}{{3!}} - ...} \right)}}{{\left( {\frac{1}{{2!}} - \frac{{{x^2}}}{{4!}} + ...} \right)}}} \right)\) M1A1
\( = \frac{{ - 1}}{{\frac{1}{2}}} = - 2\) A1
OR
\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - 2x - \frac{{4{x^3}}}{{2!}} - \frac{{6{x^5}}}{{3!}} - ...} \right)}}{{\left( {\frac{{2x}}{{2!}} - \frac{{4{x^3}}}{{4!}} + ...} \right)}}} \right)\) M1A1
\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - 2 - \frac{{4{x^2}}}{{2!}} - \frac{{6{x^4}}}{{3!}} - ...} \right)}}{{\left( {1 - \frac{{4{x^2}}}{{4!}} + ...} \right)}}} \right)\)
\( = \frac{{ - 2}}{1} = - 2\) A1
[7 marks]
Examiners report
Part (a) was well done but too often the instruction to use series in part (b) was ignored. When this hint was observed correct solutions followed.
Part (a) was well done but too often the instruction to use series in part (b) was ignored. When this hint was observed correct solutions followed.