User interface language: English | Español

Date None Specimen Marks available 3 Reference code SPNone.3ca.hl.TZ0.1
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Determine Question number 1 Adapted from N/A

Question

The function f is defined on the domain \(\left] { - \frac{\pi }{2},\frac{\pi }{2}} \right[{\text{ by }}f(x) = \ln (1 + \sin x)\) .

Show that \(f''(x) = - \frac{1}{{(1 + \sin x)}}\) .

[4]
a.

(i)     Find the Maclaurin series for \(f(x)\) up to and including the term in \({x^4}\) .

(ii)     Explain briefly why your result shows that f is neither an even function nor an odd function.

[7]
b.

Determine the value of \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln (1 + \sin x) - x}}{{{x^2}}}\).

[3]
c.

Markscheme

\(f'(x) = \frac{{\cos x}}{{1 + \sin x}}\)     A1

\(f''(x) = \frac{{ - \sin x(1 + \sin x) - \cos x\cos x}}{{{{(1 + \sin x)}^2}}}\)     M1A1

\( = \frac{{ - \sin x - ({{\sin }^2}x + {{\cos }^2}x)}}{{{{(1 + \sin x)}^2}}}\)     A1

\( = - \frac{1}{{1 + \sin x}}\)     AG

[4 marks]

a.

(i)     \(f'''(x) = \frac{{\cos x}}{{{{(1 + \sin x)}^2}}}\)     A1

\({f^{(4)}}(x) = \frac{{ - \sin x{{(1 + \sin x)}^2} - 2(1 + \sin x){{\cos }^2}x}}{{{{(1 + \sin x)}^4}}}\)     M1A1

\(f(0) = 0,{\text{ }}f'(0) = 1,{\text{ }}f''(0) = - 1\)     M1

\(f'''(0) = 1,{\text{ }}{f^{(4)}}(0) = - 2\)     A1

\(f(x) = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} - \frac{{{x^4}}}{{12}} +  \ldots \)     A1

 

(ii)     the series contains even and odd powers of x     R1

[7 marks]

b.

\(\mathop {\lim }\limits_{x \to 0} \frac{{\ln (1 + \sin x) - x}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} +  \ldots  - x}}{{{x^2}}}\)     M1

\( = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{ - 1}}{2} + \frac{x}{6} +  \ldots }}{1}\)     (A1)

\( = - \frac{1}{2}\)     A1

Note: Use of l’Hopital’s Rule is also acceptable.

 

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 9 - Option: Calculus » 9.7 » The evaluation of limits of the form \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}}\) and \(\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}}\) .

View options