Date | None Specimen | Marks available | 3 | Reference code | SPNone.3ca.hl.TZ0.1 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Determine | Question number | 1 | Adapted from | N/A |
Question
The function f is defined on the domain ]−π2,π2[ by f(x)=ln(1+sinx) .
Show that f″(x)=−1(1+sinx) .
(i) Find the Maclaurin series for f(x) up to and including the term in x4 .
(ii) Explain briefly why your result shows that f is neither an even function nor an odd function.
Determine the value of limx→0ln(1+sinx)−xx2.
Markscheme
f′(x)=cosx1+sinx A1
f″(x)=−sinx(1+sinx)−cosxcosx(1+sinx)2 M1A1
=−sinx−(sin2x+cos2x)(1+sinx)2 A1
=−11+sinx AG
[4 marks]
(i) f‴(x)=cosx(1+sinx)2 A1
f(4)(x)=−sinx(1+sinx)2−2(1+sinx)cos2x(1+sinx)4 M1A1
f(0)=0, f′(0)=1, f″(0)=−1 M1
f‴(0)=1, f(4)(0)=−2 A1
f(x)=x−x22+x36−x412+… A1
(ii) the series contains even and odd powers of x R1
[7 marks]
limx→0ln(1+sinx)−xx2=limx→0x−x22+x36+…−xx2 M1
=limx→0−12+x6+…1 (A1)
=−12 A1
Note: Use of l’Hopital’s Rule is also acceptable.
[3 marks]