Processing math: 100%

User interface language: English | Español

Date None Specimen Marks available 3 Reference code SPNone.3ca.hl.TZ0.1
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Determine Question number 1 Adapted from N/A

Question

The function f is defined on the domain ]π2,π2[ by f(x)=ln(1+sinx) .

Show that f(x)=1(1+sinx) .

[4]
a.

(i)     Find the Maclaurin series for f(x) up to and including the term in x4 .

(ii)     Explain briefly why your result shows that f is neither an even function nor an odd function.

[7]
b.

Determine the value of limx0ln(1+sinx)xx2.

[3]
c.

Markscheme

f(x)=cosx1+sinx     A1

f(x)=sinx(1+sinx)cosxcosx(1+sinx)2     M1A1

=sinx(sin2x+cos2x)(1+sinx)2     A1

=11+sinx     AG

[4 marks]

a.

(i)     f(x)=cosx(1+sinx)2     A1

f(4)(x)=sinx(1+sinx)22(1+sinx)cos2x(1+sinx)4     M1A1

f(0)=0, f(0)=1, f(0)=1     M1

f(0)=1, f(4)(0)=2     A1

f(x)=xx22+x36x412+     A1

 

(ii)     the series contains even and odd powers of x     R1

[7 marks]

b.

limx0ln(1+sinx)xx2=limx0xx22+x36+xx2     M1

=limx012+x6+1     (A1)

=12     A1

Note: Use of l’Hopital’s Rule is also acceptable.

 

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 9 - Option: Calculus » 9.7 » The evaluation of limits of the form limxaf(x)g(x) and limxf(x)g(x) .

View options