User interface language: English | Español

Date November 2010 Marks available 7 Reference code 10N.3ca.hl.TZ0.1
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Find Question number 1 Adapted from N/A

Question

Find \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - \cos {x^6}}}{{{x^{12}}}}} \right)\).

Markscheme

METHOD 1

\(f(0) = \frac{0}{0}\), hence using l’Hôpital’s Rule,     (M1)

\(g(x) = 1 - \cos ({x^6}),{\text{ }}h(x) = {x^{12}};{\text{ }}\frac{{g'(x)}}{{h'(x)}} = \frac{{6{x^5}\sin ({x^6})}}{{12{x^{11}}}} = \frac{{\sin ({x^6})}}{{2{x^6}}}\)     A1A1

EITHER

\(\frac{{g'(0)}}{{h'(0)}} = \frac{0}{0}\), using l’Hôpital’s Rule again,     (M1)

\(\frac{{g''(x)}}{{h''(x)}} = \frac{{6{x^5}\cos ({x^6})}}{{12{x^5}}} = \frac{{\cos ({x^6})}}{2}\)     A1A1

\(\frac{{g''(0)}}{{h''(0)}} = \frac{1}{2}\), hence the limit is \(\frac{1}{2}\)     A1

OR

So \(\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos {x^6}}}{{{x^{12}}}} = \mathop {\lim }\limits_{x \to 0} \frac{{\sin {x^6}}}{{2{x^6}}}\)     A1

\( = \frac{1}{2}\mathop {\lim }\limits_{x \to 0} \frac{{\sin {x^6}}}{{2{x^6}}}\)     A1

\( = \frac{1}{2}{\text{ since }}\mathop {\lim }\limits_{x \to 0} \frac{{\sin {x^6}}}{{2{x^6}}} = 1\)     A1 (R1)

METHOD 2

substituting \({{x^6}}\) for x in the expansion \(\cos x = 1 - \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} \ldots \)     (M1)

\(\frac{{1 - \cos {x^6}}}{{{x^{12}}}} = \frac{{1 - \left( {1 - \frac{{{x^{12}}}}{2} + \frac{{{x^{24}}}}{{24}}} \right) \ldots }}{{{x^{12}}}}\)     M1A1

\( = \frac{1}{2} - \frac{{{x^{12}}}}{{24}} + ...\)     A1A1

\(\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos {x^6}}}{{{x^{12}}}} = \frac{1}{2}\)     M1A1

Note: Accept solutions using Maclaurin expansions.

 

[7 marks]

Examiners report

Surprisingly, some weaker candidates were more successful in answering this question than stronger candidates. If candidates failed to simplify the expression after the first application of L’Hôpital’s rule, they generally were not successful in correctly differentiating the expression a \({2^{{\text{nd}}}}\) time, hence could not achieve the final three A marks.

Syllabus sections

Topic 9 - Option: Calculus » 9.7 » The evaluation of limits of the form \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}}\) and \(\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}}\) .

View options