User interface language: English | Español

Date May 2008 Marks available 7 Reference code 08M.3ca.hl.TZ2.1
Level HL only Paper Paper 3 Calculus Time zone TZ2
Command term Evaluate Question number 1 Adapted from N/A

Question

Find the value of \(\mathop {\lim }\limits_{x \to 1} \left( {\frac{{\ln x}}{{\sin 2\pi x}}} \right)\).

[3]
a.

By using the series expansions for \({{\text{e}}^{{x^2}}}\) and cos x evaluate \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - {{\text{e}}^{{x^2}}}}}{{1 - \cos x}}} \right).\).

[7]
b.

Markscheme

Using l’Hopital’s rule,

\(\mathop {\lim }\limits_{x \to 1} \left( {\frac{{\ln x}}{{\sin 2\pi x}}} \right) = \mathop {\lim }\limits_{x \to 1} \left( {\frac{{\frac{1}{x}}}{{2\pi \cos 2\pi x}}} \right)\)     M1A1

\( = \frac{1}{{2\pi }}\)     A1

[3 marks]

a.

\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - {{\text{e}}^{{x^2}}}}}{{1 - \cos x}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - \left( {1 + {x^2} + \frac{{{x^4}}}{{2!}} + \frac{{{x^6}}}{{3!}} + ...} \right)}}{{1 - \left( {1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - ...} \right)}}} \right)\)     M1A1A1

Note: Award M1 for evidence of using the two series.

 

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - {x^2} - \frac{{{x^4}}}{{2!}} - \frac{{{x^6}}}{{3!}} - ...} \right)}}{{\left( {\frac{{{x^2}}}{{2!}} - \frac{{{x^4}}}{{4!}} + ...} \right)}}} \right)\)     A1

EITHER

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - 1 - \frac{{{x^2}}}{{2!}} - \frac{{{x^4}}}{{3!}} - ...} \right)}}{{\left( {\frac{1}{{2!}} - \frac{{{x^2}}}{{4!}} + ...} \right)}}} \right)\)     M1A1

\( = \frac{{ - 1}}{{\frac{1}{2}}} = - 2\)     A1

OR

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - 2x - \frac{{4{x^3}}}{{2!}} - \frac{{6{x^5}}}{{3!}} - ...} \right)}}{{\left( {\frac{{2x}}{{2!}} - \frac{{4{x^3}}}{{4!}} + ...} \right)}}} \right)\)     M1A1

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - 2 - \frac{{4{x^2}}}{{2!}} - \frac{{6{x^4}}}{{3!}} - ...} \right)}}{{\left( {1 - \frac{{4{x^2}}}{{4!}} + ...} \right)}}} \right)\)

\( = \frac{{ - 2}}{1} = - 2\)     A1

[7 marks]

b.

Examiners report

Part (a) was well done but too often the instruction to use series in part (b) was ignored. When this hint was observed correct solutions followed. 

a.

Part (a) was well done but too often the instruction to use series in part (b) was ignored. When this hint was observed correct solutions followed.

b.

Syllabus sections

Topic 9 - Option: Calculus » 9.7 » The evaluation of limits of the form \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}}\) and \(\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}}\) .

View options